• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 4, 1276 (2022)
ZHANG Chenming1、*, HOU Dongshuai1, ZHANG Hongzhi2, and ZHANG Wei1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    ZHANG Chenming, HOU Dongshuai, ZHANG Hongzhi, ZHANG Wei. Peridynamic Simulation of Concrete Fracture Behavior under Uniaxial Tension[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(4): 1276 Copy Citation Text show less
    References

    [1] BALLARINI R, SHAH S P, KEER L M. Crack growth in cement-based composites[J]. Engineering Fracture Mechanics, 1984, 20(3): 433-445.

    [2] COTTERELL B, MAI Y W. Crack growth resistance curve and size effect in the fracture of cement paste[J]. Journal of Materials Science, 1987, 22(8): 2734-2738.

    [3] DE XIE, WAAS A M. Discrete cohesive zone model for mixed-mode fracture using finite element analysis[J]. Engineering Fracture Mechanics, 2006, 73(13): 1783-1796.

    [4] ZHOU X Q, HAO H. Modelling of compressive behaviour of concrete-like materials at high strain rate[J]. International Journal of Solids and Structures, 2008, 45(17): 4648-4661.

    [6] MAI Y W. Cohesive zone and crack-resistance (R)-curve of cementitious materials and their fibre-reinforced composites[J]. Engineering Fracture Mechanics, 2002, 69(2): 219-234.

    [7] CHEN E, LEUNG C K Y. Finite element modeling of concrete cover cracking due to non-uniform steel corrosion[J]. Engineering Fracture Mechanics, 2015, 134: 61-78.

    [8] WANG X F, YANG Z J, JIVKOV A P. Monte Carlo simulations of mesoscale fracture of concrete with random aggregates and pores: a size effect study[J]. Construction and Building Materials, 2015, 80: 262-272.

    [9] MANZOLI O L, MAEDO M A, BITENCOURT L A G J, et al. On the use of finite elements with a high aspect ratio for modeling cracks in quasi-brittle materials[J]. Engineering Fracture Mechanics, 2016, 153: 151-170.

    [10] WRIGGERS P, MOFTAH S O. Mesoscale models for concrete: homogenisation and damage behaviour[J]. Finite Elements in Analysis and Design, 2006, 42(7): 623-636.

    [11] MOS N, BELYTSCHKO T. Extended finite element method for cohesive crack growth[J]. Engineering Fracture Mechanics, 2002, 69(7): 813-833.

    [12] DU X L, JIN L, MA G W. Numerical modeling tensile failure behavior of concrete at mesoscale using extended finite element method[J]. International Journal of Damage Mechanics, 2014, 23(7): 872-898.

    [13] FRIES T P, BELYTSCHKO T. The extended/generalized finite element method: an overview of the method and its applications[J]. International Journal for Numerical Methods in Engineering, 2010, 84(3): 253-304.

    [15] CUSATIS G, PELESSONE D, MENCARELLI A. Lattice discrete particle model (LDPM) for failure behavior of concrete. I: theory[J]. Cement and Concrete Composites, 2011, 33(9): 881-890.

    [16] JIANG N D, ZHANG H Z, CHANG Z, et al. Discrete lattice fracture modelling of hydrated cement paste under uniaxial compression at micro-scale[J]. Construction and Building Materials, 2020, 263: 120153.

    [17] ASAHINA D, LANDIS E N, BOLANDER J E. Modeling of phase interfaces during pre-critical crack growth in concrete[J]. Cement and Concrete Composites, 2011, 33(9): 966-977.

    [18] MADENCI E, OTERKUS E. Peridynamic theory and its applications[M]. New York: Springer New York, 2014.

    [20] SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175-209.

    [21] SILLING S A, ASKARI E. A meshfree method based on the peridynamic model of solid mechanics[J]. Computers & Structures, 2005, 83(17/18): 1526-1535.

    [22] SILLING S A, LEHOUCQ R B. Convergence of peridynamics to classical elasticity theory[J]. Journal of Elasticity, 2008, 93(1): 13-37.

    [23] HUANG D, ZHANG Q, QIAO P Z. Damage and progressive failure of concrete structures using non-local peridynamic modeling[J]. Science China Technological Sciences, 2011, 54(3): 591-596.

    [24] HOU D S, ZHANG W, GE Z, et al. Experimentally validated peridynamic fracture modelling of mortar at the meso-scale[J]. Construction and Building Materials, 2021, 267: 120939.

    [25] OTERKUS E, MADENCI E, WECKNER O, et al. Combined finite element and peridynamic analyses for predicting failure in a stiffened composite curved panel with a central slot[J]. Composite Structures, 2012, 94(3): 839-850.

    [26] LIU W Y, HONG J W. A coupling approach of discretized peridynamics with finite element method[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 245/246: 163-175.

    [27] LI W J, GUO L. Meso-fracture simulation of cracking process in concrete incorporating three-phase characteristics by peridynamic method[J]. Construction and Building Materials, 2018, 161: 665-675.

    [30] HOU D S, ZHANG J R, LI Z J, et al. Uniaxial tension study of calcium silicate hydrate (C-S-H): structure, dynamics and mechanical properties[J]. Materials and Structures, 2015, 48(11): 3811-3824.

    ZHANG Chenming, HOU Dongshuai, ZHANG Hongzhi, ZHANG Wei. Peridynamic Simulation of Concrete Fracture Behavior under Uniaxial Tension[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(4): 1276
    Download Citation