• Photonics Research
  • Vol. 9, Issue 5, 649 (2021)
Ying Wan1, Jianxiang Wen1、*, Chen Jiang1, Fengzai Tang2、4, Jing Wen3, Sujuan Huang1, Fufei Pang1, and Tingyun Wang1、5
Author Affiliations
  • 1Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
  • 2WMG, University of Warwick, Coventry CV4 7AL, UK
  • 3Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
  • 4e-mail: fengzai.Tang@warwick.ac.uk
  • 5e-mail: tywang@shu.edu.cn
  • show less
    DOI: 10.1364/PRJ.419178 Cite this Article Set citation alerts
    Ying Wan, Jianxiang Wen, Chen Jiang, Fengzai Tang, Jing Wen, Sujuan Huang, Fufei Pang, Tingyun Wang. Over 255 mW single-frequency fiber laser with high slope efficiency and power stability based on an ultrashort Yb-doped crystal-derived silica fiber[J]. Photonics Research, 2021, 9(5): 649 Copy Citation Text show less
    References

    [1] H. R. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, V. Brasch, G. Lihachev, V. E. Lobanov, M. L. Gorodetsky, T. J. Kippenberg. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys., 13, 94-102(2017).

    [2] C. Dixneuf, G. Guiraud, Y. V. Bardin, Q. Rosa, M. Goeppner, A. Hilico, C. Pierre, J. Boullet, N. Traynor, G. Santarelli. Ultra-low intensity noise, all fiber 365  W linearly polarized single frequency laser at 1064  nm. Opt. Express, 28, 10960-10969(2020).

    [3] F. Wellmann, M. Steinke, F. Meylahn, N. Bode, B. Willke, L. Overmeyer, J. Neumann, D. Kracht. High power, single-frequency, monolithic fiber amplifier for the next generation of gravitational wave detectors. Opt. Express, 27, 28523-28533(2019).

    [4] C. Y. Qin, K. P. Jia, Q. Y. Li, T. Tan, X. H. Wang, Y. H. Guo, S. W. Huang, Y. Liu, S. N. Zhu, Z. D. Xie, Y. J. Rao, B. C. Yao. Electrically controllable laser frequency combs in graphene-fibre microresonators. Light Sci. Appl., 9, 185(2020).

    [5] C. Spiegelberg, J. H. Geng, Y. D. Hu, Y. Kaneda, S. B. Jiang, N. Peyghambarian. Low-noise narrow-linewidth fiber laser at 1550  nm (June 2003). J. Lightwave Technol., 22, 57-62(2004).

    [6] O. V. Butov, A. A. Rybaltovsky, A. P. Bazakutsa, K. M. Golant, M. Y. Vyatkin, S. M. Popov, Y. K. Chamorovskiy. 1030  nm Yb3+ distributed feedback short cavity silica-based fiber laser. J. Opt. Soc. Am. B, 34, A43-A48(2017).

    [7] M. J. Yin, S. H. Huang, B. L. Lu, H. W. Chen, Z. Y. Ren, J. T. Bai. Slope efficiency over 30% single-frequency ytterbium-doped fiber laser based on Sagnac loop mirror filter. Appl. Opt., 52, 6799-6803(2013).

    [8] Z. K. Wang, J. M. Shang, K. L. Mu, Y. J. Qiao, S. Yu. Single-longitudinal-mode fiber laser with an ultra-narrow linewidth and extremely high stability obtained by utilizing a triple-ring passive subring resonator. Opt. Laser Technol., 130, 106329(2020).

    [9] Y. Kaneda, C. Spiegelberg, J. H. Geng, Y. D. Hu, T. Luo, J. F. Wang, S. B. Jiang. 200-mW, narrow-linewidth 1064.2-nm Yb-doped fiber laser. Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, CThO3(2004).

    [10] S. H. Xu, Z. M. Yang, W. N. Zhang, X. M. Wei, Q. Qian, D. D. Chen, Q. Y. Zhang, S. X. Shen, M. Y. Peng, J. R. Qiu. 400  mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser. Opt. Lett., 36, 3708-3710(2011).

    [11] S. L. Kang, T. Qiao, X. J. Huang, C. S. Yang, X. F. Liu, J. R. Qiu, Z. M. Yang, G. P. Dong. Enhanced CW lasing and Q-switched pulse generation enabled by Tm3+-doped glass ceramic fibers. Adv. Opt. Mater., 9, 2001774(2020).

    [12] G. W. Tang, G. Q. Qian, W. Lin, W. L. Wang, Z. G. Shi, Y. Yang, N. L. Dai, Q. Qian, Z. M. Yang. Broadband 2 μm amplified spontaneous emission of Ho/Cr/Tm:YAG crystal derived all-glass fibers for mode-locked fiber laser applications. Opt. Lett., 44, 3290-3293(2019).

    [13] Z. J. Liu, Y. Y. Xie, Z. H. Cong, Z. G. Zhao, Z. X. Jia, C. Z. Li, G. S. Qin, S. Wang, X. B. Gao, X. B. Shao, X. Y. Zhang. 110  mW single-frequency Yb: YAG crystal-derived silica fiber laser at 1064 nm. Opt. Lett., 44, 4307-4310(2019).

    [14] X. C. Guan, Q. L. Zhao, W. Lin, T. Y. Tan, C. S. Yang, P. F. Ma, Z. M. Yang, S. H. Xu. High-efficiency and high-power single-frequency fiber laser at 1.6  μm based on cascaded energy-transfer pumping. Photon. Res., 8, 414-420(2020).

    [15] P. D. Dragic, J. Ballato, T. Hawkins, P. Foy. Feasibility study of Yb: YAG-derived silicate fibers with large Yb content as gain media. Opt. Mater., 34, 1294-1298(2012).

    [16] C. Z. Li, Z. X. Jia, Z. H. Cong, Z. J. Liu, X. Y. Zhang, G. S. Qin, W. P. Qin. Gain characteristics of ytterbium-doped SiO2–Al2O3–Y2O3 fibers. Laser Phys., 29, 055804(2019).

    [17] Y. F. Wang, Y. M. Zhang, J. K. Cao, L. P. Wang, X. L. Peng, J. P. Zhong, C. S. Yang, S. H. Xu, Z. M. Yang, M. Y. Peng. 915  nm all-fiber laser based on novel Nd-doped high alumina and yttria glass @ silica glass hybrid fiber for the pure blue fiber laser. Opt. Lett., 44, 2153-2156(2019).

    [18] Y. M. Zhang, G. Q. Qian, X. S. Xiao, X. L. Tian, X. Q. Ding, Z. J. Ma, L. Y. Yang, H. T. Guo, S. H. Xu, Z. M. Yang, J. R. Qiu. The preparation of yttrium aluminosilicate (YAS) glass fiber with heavy doping of Tm3+ from polycrystalline YAG ceramics. J. Am. Ceram. Soc., 101, 4627-4633(2018).

    [19] S. P. Zheng, J. Li, C. L. Yu, Q. L. Zhou, D. P. Chen. Preparation and characterizations of Nd:YAG ceramic derived silica fibers drawn by post-feeding molten core approach. Opt. Express, 24, 24248-24254(2016).

    [20] Y. M. Zhang, G. Q. Qian, X. S. Xiao, X. L. Tian, Z. Chen, J. P. Zhong, Z. J. Ma, H. T. Guo, S. H. Xu, Z. M. Yang, J. R. Qiu. A yttrium aluminosilicate glass fiber with graded refractive index fabricated by melt-in-tube method. J. Am. Ceram. Soc., 101, 1616-1622(2018).

    [21] P. Dragic, P. C. Law, J. Ballato, T. Hawkins, P. Foy. Brillouin spectroscopy of YAG-derived optical fibers. Opt. Express, 18, 10055-10067(2010).

    [22] P. D. Dragic, Y. S. Liu, J. Ballato, T. Hawkins, P. Foy. YAG-derived fiber for high-power narrow-linewidth fiber lasers. Proc. SPIE, 8237, 82371E(2012).

    [23] S. P. Zheng, J. Li, C. L. Yu, Q. L. Zhou, L. L. Hu, D. P. Chen. Preparation and characterizations of Yb:YAG-derived silica fibers drawn by on-line feeding molten core approach. Ceram. Int., 43, 5837-5841(2017).

    [24] Y. M. Zhang, W. W. Wang, J. Li, X. S. Xiao, Z. J. Ma, H. T. Guo, G. P. Dong, S. H. Xu, J. R. Qiu. Multi-component yttrium aluminosilicate (YAS) fiber prepared by melt-in-tube method for stable single-frequency laser. J. Am. Ceram. Soc., 102, 2551-2557(2019).

    [25] Y. Y. Xie, Z. J. Liu, Z. H. Cong, Z. G. Qin, S. Wang, Z. X. Jia, C. Z. Li, G. S. Qin, X. B. Gao, X. Y. Zhang. All-fiber-integrated Yb:YAG-derived silica fiber laser generating 6 W output power. Opt. Express, 27, 3791-3798(2019).

    [26] Y. Wan, J. X. Wen, Y. H. Dong, C. Jiang, M. Jia, F. Z. Tang, N. Chen, Z. W. Zhao, S. J. Huang, F. F. Pang, T. Y. Wang. Exceeding 50% slope efficiency DBR fiber laser based on a Yb-doped crystal-derived silica fiber with high gain per unit length. Opt. Express, 28, 23771-23783(2020).

    [27] H. Noel, M. Fokine, Y. Franz, T. Hawkins, M. Jones, J. Ballato, A. C. Peacock, U. J. Gibson. CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss. Adv. Opt. Mater., 4, 1004-1008(2016).

    [28] D. E. McCumber. Einstein relations connecting broadband emission and absorption spectra. Phys. Rev., 136, A954-A957(1964).

    [29] F. B. Slimen, S. X. Chen, J. Lousteau, Y. M. Jung, N. White, S. Alam, D. J. Richardson, F. Poletti. Highly efficient Tm3+ doped germanate large mode area single mode fiber laser. Opt. Mater. Express, 9, 4115-4125(2019).

    [30] P. Barua, E. H. Sekiya, K. Saito, A. J. Ikushima. Influences of Yb3+ ion concentration on the spectroscopic properties of silica glass. J. Non-Cryst. Solids, 354, 4760-4764(2008).

    [31] W. Zhang, J. T. Liu, G. Y. Zhou, C. M. Xia, J. L. Wu, Y. Chen, X. L. Cang, Z. Y. Hou. Analysis on the optical properties for the ytterbium doped silica glasses prepared by laser sintering technology. Opt. Quantum Electron., 49, 27(2017).

    [32] H. X. Li, J. Lousteau, W. N. MacPherson, X. Jiang, H. T. Bookey, J. S. Barton, A. Jha, A. K. Kar. Thermal sensitivity of tellurite and germanate optical fibers. Opt. Express, 15, 8857-8863(2007).

    [33] Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, M. V. Andrés. Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings. Opt. Express, 14, 6394-6399(2006).

    [34] S. H. Xu, C. Li, W. N. Zhang, S. P. Mo, C. S. Yang, X. M. Wei, Z. M. Feng, Q. Qian, S. X. Shen, M. Y. Peng, Q. Y. Zhang, Z. M. Yang. Low noise single-frequency single-polarization ytterbium-doped phosphate fiber laser at 1083 nm. Opt. Lett., 38, 501-503(2013).

    [35] Z. M. Feng, S. P. Mo, S. H. Xu, X. Huang, Z. R. Zhong, C. S. Yang, C. Li, W. N. Zhang, D. D. Chen, Z. M. Yang. A compact linearly polarized low-noise single-frequency fiber laser at 1064  nm. Appl. Phys. Express, 6, 052701(2013).

    [36] B. Sun, J. Jia, J. Huang, X. Q. Zhang, J. T. Bai. A 1030  nm single-frequency distributed Bragg reflector Yb-doped silica fiber laser. Laser Phys., 27, 105105(2017).

    [37] B. Sun, X. Q. Zhang, J. Jia. Single-frequency fiber laser at 1030  nm based on gain bandwidth compression. Laser Phys. Lett., 16, 065101(2019).

    [38] W. Guan, J. R. Marciante. Single-polarisation, single-frequency, 2  cm ytterbium-doped fibre laser. Electron. Lett., 43, 558-560(2007).

    [39] Y. F. Wang, J. M. Wu, Q. L. Zhao, W. W. Wang, J. Zhang, Z. M. Yang, S. H. Xu, M. Y. Peng. Single-frequency DBR Nd-doped fiber laser at 1120  nm with a narrow linewidth and low threshold. Opt. Lett., 45, 2263-2266(2020).

    [40] G. P. Agrawal. Line narrowing in a single-mode injection laser due to external optical feedback. IEEE J. Quantum Electron., 20, 468-471(1984).

    [41] Z. P. Huang, H. Q. Deng, C. S. Yang, Q. L. Zhao, Y. F. Zhang, Y. N. Zhang, Z. M. Feng, Z. M. Yang, M. Y. Peng, S. H. Xu. Self-injection locked and semiconductor amplified ultrashort cavity single-frequency Yb3+-doped phosphate fiber laser at 978  nm. Opt. Express, 25, 1535-1541(2017).

    Ying Wan, Jianxiang Wen, Chen Jiang, Fengzai Tang, Jing Wen, Sujuan Huang, Fufei Pang, Tingyun Wang. Over 255 mW single-frequency fiber laser with high slope efficiency and power stability based on an ultrashort Yb-doped crystal-derived silica fiber[J]. Photonics Research, 2021, 9(5): 649
    Download Citation