• Acta Physica Sinica
  • Vol. 68, Issue 17, 170504-1 (2019)
Ke-Wu Qi, Yu-Hong Zhao*, Hui-Jun Guo, Xiao-Lin Tian, and Hua Hou
DOI: 10.7498/aps.68.20190051 Cite this Article
Ke-Wu Qi, Yu-Hong Zhao, Hui-Jun Guo, Xiao-Lin Tian, Hua Hou. Phase field crystal simulation of the effect of temperature on low-angle symmetric tilt grain boundary dislocation motion[J]. Acta Physica Sinica, 2019, 68(17): 170504-1 Copy Citation Text show less
Two-dimensional phase diagram as calculated in a one-mode approximation (hatched areas in the figure correspond to coexistence regions).单模近似下的二维相图(图中阴影部分表示两相区)
Fig. 1. Two-dimensional phase diagram as calculated in a one-mode approximation (hatched areas in the figure correspond to coexistence regions).单模近似下的二维相图(图中阴影部分表示两相区)
Simulation of relaxation process under the conditions of temperature r = –0.25 at (a) n = 300, (b) n = 800, (c) n = 15000, (d) n = 29450.r = –0.25条件下弛豫过程模拟 (a) n = 300; (b) n = 800; (c) n = 15000; (d) n = 29450
Fig. 2. Simulation of relaxation process under the conditions of temperature r = –0.25 at (a) n = 300, (b) n = 800, (c) n = 15000, (d) n = 29450. r = –0.25条件下弛豫过程模拟 (a) n = 300; (b) n = 800; (c) n = 15000; (d) n = 29450
Snapshot of two grains with an orientation angle of 2.8°.两晶粒形成夹角为2.8°的位向角
Fig. 3. Snapshot of two grains with an orientation angle of 2.8°.两晶粒形成夹角为2.8°的位向角
Simulation of grain boundary dislocation under different temperature conditions at 29500 steps of relaxation process: (a) r = –0.23; (b) r = –0.25; (c) r = –0.28; (d) r = –0.30弛豫过程29500步时不同温度条件下晶界位错模拟图 (a) r = –0.23; (b) r = –0.25; (c) r = –0.28; (d) r = –0.30
Fig. 4. Simulation of grain boundary dislocation under different temperature conditions at 29500 steps of relaxation process: (a) r = –0.23; (b) r = –0.25; (c) r = –0.28; (d) r = –0.30 弛豫过程29500步时不同温度条件下晶界位错模拟图 (a) r = –0.23; (b) r = –0.25; (c) r = –0.28; (d) r = –0.30
Effect of temperature on the change of free energy of relaxation process system.温度对弛豫过程体系自由能变化的影响
Fig. 5. Effect of temperature on the change of free energy of relaxation process system.温度对弛豫过程体系自由能变化的影响
Simulation diagram of grain boundary dislocation motion under stress with r = –0.23: (a) n = 5500; (b) n = 10900; (c) n = 11350; (d) n = 13350; (e) n = 13850; (f) n = 24450.应力作用下r = –0.23时晶界位错运动模拟图 (a) n = 5500; (b) n = 10900; (c) n = 11350; (d) n = 13350; (e) n = 13850; (f) n = 24450
Fig. 6. Simulation diagram of grain boundary dislocation motion under stress with r = –0.23: (a) n = 5500; (b) n = 10900; (c) n = 11350; (d) n = 13350; (e) n = 13850; (f) n = 24450. 应力作用下r = –0.23时晶界位错运动模拟图 (a) n = 5500; (b) n = 10900; (c) n = 11350; (d) n = 13350; (e) n = 13850; (f) n = 24450
Simulation diagram of grain boundary dislocation motion under stress with r = –0.25: (a) n = 11100; (b) n = 11550; (c) n = 13600; (d) n = 13850; (e) n = 14100; (f) n = 25150.应力作用下r = –0.25时晶界位错运动模拟图 (a) n = 11100; (b) n = 11550; (c) n = 13600; (d) n = 13850; (e) n = 14100; (f) n = 25150
Fig. 7. Simulation diagram of grain boundary dislocation motion under stress with r = –0.25: (a) n = 11100; (b) n = 11550; (c) n = 13600; (d) n = 13850; (e) n = 14100; (f) n = 25150. 应力作用下r = –0.25时晶界位错运动模拟图 (a) n = 11100; (b) n = 11550; (c) n = 13600; (d) n = 13850; (e) n = 14100; (f) n = 25150
Simulation diagram of grain boundary dislocation motion under stress with r = –0.28: (a) n = 11800; (b) n = 12050; (c) n = 13800; (d) n = 29050; (e) n = 33450; (f) n = 33700.应力作用下r = –0.28时晶界位错运动模拟图 (a) n = 11800; (b) n = 12050; (c) n = 13800; (d) n = 29050; (e) n = 33450; (f) n = 33700
Fig. 8. Simulation diagram of grain boundary dislocation motion under stress with r = –0.28: (a) n = 11800; (b) n = 12050; (c) n = 13800; (d) n = 29050; (e) n = 33450; (f) n = 33700. 应力作用下r = –0.28时晶界位错运动模拟图 (a) n = 11800; (b) n = 12050; (c) n = 13800; (d) n = 29050; (e) n = 33450; (f) n = 33700
Simulation diagram of grain boundary dislocation motion under stress with r = –0.30: (a) n = 11300; (b) n = 12100; (c) n = 12500; (d) n = 39550; (e) n = 40100; (f) n = 76500.应力作用下r = –0.30时晶界位错运动模拟图 (a) n = 11300; (b) n = 12100; (c) n = 12500; (d) n = 39550; (e) n = 40100; (f) n = 76500
Fig. 9. Simulation diagram of grain boundary dislocation motion under stress with r = –0.30: (a) n = 11300; (b) n = 12100; (c) n = 12500; (d) n = 39550; (e) n = 40100; (f) n = 76500. 应力作用下r = –0.30时晶界位错运动模拟图 (a) n = 11300; (b) n = 12100; (c) n = 12500; (d) n = 39550; (e) n = 40100; (f) n = 76500
Simulation diagram under different temperature conditions at n = 11200: (a) r = –0.23; (b) r = –0.25; (c) r = –0.28; (d) r = –0.30.11200步时不同温度条件下的模拟图 (a) r = –0.23; (b) r = –0.25; (c) r = –0.28; (d) r = –0.30
Fig. 10. Simulation diagram under different temperature conditions at n = 11200: (a) r = –0.23; (b) r = –0.25; (c) r = –0.28; (d) r = –0.30. 11200步时不同温度条件下的模拟图 (a) r = –0.23; (b) r = –0.25; (c) r = –0.28; (d) r = –0.30
Free energy curve of system under different degrees of temperature: (a) r = –0.23; (b) r = –0.25; (c) r = –0.28; (d) r = –0.30不同温度下体系自由能曲线图 (a) r = –0.23; (b) r = –0.25; (c) r = –0.28; (d) r = –0.30
Fig. 11. Free energy curve of system under different degrees of temperature: (a) r = –0.23; (b) r = –0.25; (c) r = –0.28; (d) r = –0.30 不同温度下体系自由能曲线图 (a) r = –0.23; (b) r = –0.25; (c) r = –0.28; (d) r = –0.30
方案初始原子密度ρ0位向差θ温度相关参量r
A0.2852.8°–0.23
B0.2852.8°–0.25
C0.2852.8°–0.28
D0.2852.8°–0.30
Table 1. Parameters used in the simulation.
Ke-Wu Qi, Yu-Hong Zhao, Hui-Jun Guo, Xiao-Lin Tian, Hua Hou. Phase field crystal simulation of the effect of temperature on low-angle symmetric tilt grain boundary dislocation motion[J]. Acta Physica Sinica, 2019, 68(17): 170504-1
Download Citation