• Photonics Research
  • Vol. 12, Issue 2, 218 (2024)
Shuqi Qiao1,†, Xiaochen Zhang2,†, Qinghua Liang2, Yang Wang2..., Chang-Yin Ji2, Xiaowei Li3, Lan Jiang3, Shuai Feng1, Honglian Guo1,4,* and Jiafang Li2,5,*|Show fewer author(s)
Author Affiliations
  • 1School of Science, Minzu University of China, Beijing 100081, China
  • 2Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
  • 3Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
  • 4e-mail: hlguo@muc.edu.cn
  • 5e-mail: jiafangli@bit.edu.cn
  • show less
    DOI: 10.1364/PRJ.507863 Cite this Article Set citation alerts
    Shuqi Qiao, Xiaochen Zhang, Qinghua Liang, Yang Wang, Chang-Yin Ji, Xiaowei Li, Lan Jiang, Shuai Feng, Honglian Guo, Jiafang Li, "Refractive index sensing based on a twisted nano-kirigami metasurface," Photonics Res. 12, 218 (2024) Copy Citation Text show less
    References

    [1] V. K. Rai. Temperature sensors and optical sensors. Appl. Phys. B, 88, 297-303(2007).

    [2] B. Liu, J. Zhuang, G. Wei. Recent advances in the design of colorimetric sensors for environmental monitoring. Environ. Sci. Nano, 7, 2195-2213(2020).

    [3] M. B. Stuart, A. J. McGonigle, J. R. Willmott. Hyperspectral imaging in environmental monitoring: a review of recent developments and technological advances in compact field deployable systems. Sensors, 19, 3071(2019).

    [4] R. Min, Z. Liu, L. Pereira. Optical fiber sensing for marine environment and marine structural health monitoring: a review. Opt. Laser Technol., 140, 107082(2021).

    [5] J. Chen, Y. Huang, P. Kannan. Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables. Anal. Chem., 88, 2149-2155(2016).

    [6] Z. Hai, J. Li, J. Wu. Alkaline phosphatase-triggered simultaneous hydrogelation and chemiluminescence. J. Am. Chem. Soc., 139, 1041-1044(2017).

    [7] J. Wackerlig, R. Schirhagl. Applications of molecularly imprinted polymer nanoparticles and their advances toward industrial use: a review. Anal. Chem., 88, 250-261(2016).

    [8] E. Morales-Narváez, H. Golmohammadi, T. Naghdi. Nanopaper as an optical sensing platform. ACS Nano, 9, 7296-7305(2015).

    [9] A. Dhiman, P. Kalra, V. Bansal. Aptamer-based point-of-care diagnostic platforms. Sens. Actuators B, 246, 535-553(2017).

    [10] S. M. Mousavi, M. Zarei, S. A. Hashemi. Gold nanostars-diagnosis, bioimaging and biomedical applications. Drug Metabol. Rev., 52, 299-318(2020).

    [11] K. Nejati, M. Dadashpour, T. Gharibi. Biomedical applications of functionalized gold nanoparticles: a review. J. Cluster Sci., 33, 1-16(2022).

    [12] J. Guo, C. Yang, Q. Dai. Soft and stretchable polymeric optical waveguide-based sensors for wearable and biomedical applications. Sensors, 19, 3771(2019).

    [13] H. Ouyang, X. Tu, Z. Fu. Colorimetric and chemiluminescent dual-readout immunochromatographic assay for detection of pesticide residues utilizing g-C3N4/BiFeO3 nanocomposites. Biosens. Bioelectron., 106, 43-49(2018).

    [14] J. Ma, D.-W. Sun, H. Pu. Advanced techniques for hyperspectral imaging in the food industry: principles and recent applications. Ann. Rev. Food Sci. Technol., 10, 197-220(2019).

    [15] L. Rodriguez-Saona, D. P. Aykas, K. R. Borba. Miniaturization of optical sensors and their potential for high-throughput screening of foods. Curr. Opin. Food Sci., 31, 136-150(2020).

    [16] Z.-B. Fan, H.-Y. Qiu, H.-L. Zhang. A broadband achromatic metalens array for integral imaging in the visible. Light Sci. Appl., 8, 67(2019).

    [17] S. Gwo, C.-K. Shih. Semiconductor plasmonic nanolasers: current status and perspectives. Rep. Prog. Phys., 79, 086501(2016).

    [18] Q. Song, M. Odeh, J. Zúñiga-Pérez. Plasmonic topological metasurface by encircling an exceptional point. Science, 373, 1133-1137(2021).

    [19] F. Ding, Y. Chen, S. I. Bozhevolnyi. Focused vortex-beam generation using gap-surface plasmon metasurfaces. Nanophotonics, 9, 371-378(2020).

    [20] F. Ding, Y. Chen, S. I. Bozhevolnyi. Gap-surface plasmon metasurfaces for linear-polarization conversion, focusing, and beam splitting. Photonics Res., 8, 707-714(2020).

    [21] Q. Tan, Z. Xu, D. H. Zhang. Polarization-controlled plasmonic structured illumination. Nano Lett., 20, 2602-2608(2020).

    [22] A. C. Tasolamprou, E. Skoulas, G. Perrakis. Highly ordered laser imprinted plasmonic metasurfaces for polarization sensitive perfect absorption. Sci. Rep., 12, 19769(2022).

    [23] J. Jin, X. Li, Y. Guo. Polarization-controlled unidirectional excitation of surface plasmon polaritons utilizing catenary apertures. Nanoscale, 11, 3952-3957(2019).

    [24] X. Wang, S.-C. Huang, S. Hu. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat. Rev. Phys., 2, 253-271(2020).

    [25] X. X. Han, R. S. Rodriguez, C. L. Haynes. Surface-enhanced Raman spectroscopy. Nat. Rev. Methods Primers, 1, 87(2022).

    [26] J. E. Park, N. Yonet-Tanyeri, E. V. Ende. Plasmonic microneedle arrays for in situ sensing with surface-enhanced Raman spectroscopy (SERS). Nano Lett., 19, 6862-6868(2019).

    [27] Y. Chen, W. Du, Q. Zhang. Multidimensional nanoscopic chiroptics. Nat. Rev. Phys., 4, 113-124(2022).

    [28] Y. Chen, W. Chen, X. Kong. Can weak chirality induce strong coupling between resonant states?. Phys. Rev. Lett., 128, 146102(2022).

    [29] Y. Chen, C. Zhao, Y. Zhang. Integrated molar chiral sensing based on high-Q metasurface. Nano Lett., 20, 8696-8703(2020).

    [30] Z. Yin, X. Hu, J. Zeng. Self-powered circularly polarized light detector based on asymmetric chiral metamaterials. J. Semicond., 41, 122301(2020).

    [31] Y. Ziai, F. Petronella, C. Rinoldi. Chameleon-inspired multifunctional plasmonic nanoplatforms for biosensing applications. NPG Asia Mater., 14, 18(2022).

    [32] E. Elliott, K. Bedingfield, J. Huang. Fingerprinting the hidden facets of plasmonic nanocavities. ACS Photonics, 9, 2643-2651(2022).

    [33] H. Ye, C. Nowak, Y. Liu. Plasmonic LAMP: improving the detection specificity and sensitivity for SARS-CoV-2 by plasmonic sensing of isothermally amplified nucleic acids. Small, 18, 2107832(2022).

    [34] Y. Xu, P. Bai, X. Zhou. Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth. Adv. Opt. Mater., 7, 1801433(2019).

    [35] H.-H. Jeong, A. G. Mark, T.-C. Lee. Active nanorheology with plasmonics. Nano Lett., 16, 4887-4894(2016).

    [36] X. Duan, S. Kamin, F. Sterl. Hydrogen-regulated chiral nanoplasmonics. Nano Lett., 16, 1462-1466(2016).

    [37] J. Li, Z. Liu. Focused-ion-beam-based nano-kirigami: from art to photonics. Nanophotonics, 7, 1637-1650(2018).

    [38] J. T. Collins, C. Kuppe, D. C. Hooper. Chirality and chiroptical effects in metal nanostructures: fundamentals and current trends. Adv. Opt. Mater., 5, 1700182(2017).

    Shuqi Qiao, Xiaochen Zhang, Qinghua Liang, Yang Wang, Chang-Yin Ji, Xiaowei Li, Lan Jiang, Shuai Feng, Honglian Guo, Jiafang Li, "Refractive index sensing based on a twisted nano-kirigami metasurface," Photonics Res. 12, 218 (2024)
    Download Citation