• Study On Optical Communications
  • Vol. 50, Issue 6, 23008401 (2024)
Linjun HOU, Song FENG*, Jie OUYANG, Xiangjian HU..., Haojie LI, Shaokai GUO, Yong LIU, Di WANG, Menglin CHEN, Lulu FENG, Ran ZHOU, Jianyang WU, Yuling ZENG and Xinyi HE|Show fewer author(s)
Author Affiliations
  • School of Science, Xi’an Polytechnic University, Xi’an 710048, China
  • show less
    DOI: 10.13765/j.gtxyj.2024.230084 Cite this Article
    Linjun HOU, Song FENG, Jie OUYANG, Xiangjian HU, Haojie LI, Shaokai GUO, Yong LIU, Di WANG, Menglin CHEN, Lulu FENG, Ran ZHOU, Jianyang WU, Yuling ZENG, Xinyi HE. Research Progress of Silicon based Micro Ring Resonators[J]. Study On Optical Communications, 2024, 50(6): 23008401 Copy Citation Text show less
    References

    [1] Geuzebroek D H, Driessen A. Ring-resonator-based Wavelength Filters[M]. Wavelength Filters in Fibre Optics(2006).

    [2] Sun Y, Fan X. Optical Ring Resonators for Biochemical and Chemical Sensing[J]. Analytical and Bioanalytical Chemistry, 399, 205-211(2011).

    [3] Steglich P, Hülsemann M, Dietzel B et al. Optical Biosensors based on Silicon-on-insulator Ring Resonators: a Review[J]. Molecules, 24, 519-534(2019).

    [4] Marris-Morini D, Vivien L, Fédéli J M et al. Low Loss and High Speed Silicon Optical Modulator based on a Lateral Carrier Depletion Structure[J]. Optics Express, 16, 334-339(2008).

    [5] Green W M, Rooks M J, Sekaric L et al. Ultra-compact, Low RF Power, 10 Gb/s Silicon Mach-Zehnder Modulator[J]. Optics Express, 5, 17106-17113(2007).

    [6] Roelkens G, Liu L, Liang D et al. III-V/Silicon Photonics for On-chip and Intra-chip Optical Interconnects[J]. Laser & Photonics Reviews, 4, 751-779(2010).

    [7] Van Campenhout J, Rojo Romeo P, Regreny P et al. Electrically Pumped InP-based Microdisk Lasers Integrated with a Nanophotonic Silicon-on-insulator Waveguide Circuit[J]. Optics Express, 15, 6744-6749(2007).

    [8] Yu J Z[M]. Silicon Photonics(2011).

    [9] Griffith A, Cardenas J, Poitras C B et al. High Quality Factor and High Confinement Silicon Resonators Using Etchless Process[C], 6325465(2012).

    [10] Biberman A, Shaw M J, Timurdogan E et al. Ultralow-loss Silicon Ring Resonators[J]. Optics Letters, 37, 4236-4238(2012).

    [11] Soltanian M R K, Amiri I S, Chong W Y et al. Stable Dual-wavelength Coherent Source with Tunable Wavelength Spacing Generated by Spectral Slicing a Mode-locked Laser Using Microring Resonator[J]. IEEE Photonics Journal, 7, 1504311(2015).

    [12] Zhang W, Yao J. All-optically Controlled Fabry-Perot Cavity-assisted Add-drop Microring Resonator on a Silicon Chip[C], 7183916(2015).

    [13] Ji X, Barbosa F A S, Roberts S P et al. Ultra-low-loss On-chip Resonators with Sub-milliwatt Parametric Oscillation Threshold[J]. Optica, 4, 619(2017).

    [14] Tu X, Chen S L, Song C et al. Ultrahigh Q Polymer Microring Resonators for Biosensing Applications[J]. IEEE Photonics Journal, 11, 4200110(2019).

    [15] Zhang L, Jie L, Zhang M et al. Ultrahigh-Q Silicon Racetrack Resonators[J]. Photonics Research, 8, 684-689(2020).

    [16] Nijem J, Naiman A, Zektzer R et al. High Q-factor Microring Resonator Using Local Oxidation of Silicon (LOCOS) and Adiabatic Geometry[C], 9571758(2021).

    [17] Saharia A, Mudgal N, Choure K K et al. Proposed All-optical Read-only Memory Element Employing Si3N4 based Optical Microring Resonator[J]. Optik, 251, 168493(2022).

    [18] Van V, Absil P P, Hryniewicz J V et al. Propagation Loss in Single-mode GaAs-AlGaAs Microring Resonators: Measurement and Model[J]. Journal of Lightwave Technology, 19, 1734-1739(2001).

    [19] Scheuer J, Yadin Y, Margalit M. Vertically Coupled Glass Microring Resonator Channel Dropping Filters[P].

    [20] Cohen R A, Amrani O, Ruschin S. Response Shaping with a Silicon Ring Resonator via Double Injection[J]. Nature Photonics, 12, 706-712(2018).

    [21] Gumelar M R, Purnamaningsih R W. Modelling a Racetrack-shaped Microring-resonator-based Add-drop Filter in GaN/Sapphire[C], 9205083(2020).

    [22] Yin Y X, Yin X J, Zhang X P et al. High-Q-factor Silica-based Racetrack Microring Resonators[J]. Photonics, 8, 43-51(2021).

    [23] Sun T, Niu W, Xia M. Racetrack Microring Resonator with Improved Quality Factor based on Asymmetric Waveguide Bend[J]. Optics Communications, 529, 129092(2023).

    [24] Zhang Y, Hu X, Chen D et al. Design and Demonstration of Ultra-high-Q Silicon Microring Resonator based on a Multi-mode Ridge Waveguide[J]. Optics Letters, 43, 1586-1589(2018).

    [25] Cai D P, Lu J H, Chen C C et al. High Q-factor Microring Resonator Wrapped by the Curved Waveguide[J]. Scientific Reports, 5, 10078(2015).

    [26] Chamorro-Posada P, Baños R. Design and Characterization of Q-enhanced Silicon Nitride Racetrack Micro-Resonators[J]. Journal of Lightwave Technology, 39, 2917-2923(2021).

    [27] Tobing L Y M, Dumon P, Baets R et al. Boxlike Filter Response based on Complementary Photonic Bandgaps in Two-dimensional Microresonator Arrays[J]. Optics Letters, 33, 2512-2514(2008).

    [28] Hu Y T, Zhang L, Xiao X et al. 80 Gb/s Photonic Temporal Differentiator based on Cascaded SOI Microring Resonators[C], 6053718(2011).

    [29] Liu L, He M Y, Dong J J. Compact Continuously Tunable Microwave Photonic Filters based on Cascaded Silicon Microring Resonators[J]. Optics Communications, 363, 128-133(2016).

    [30] Zhang Z, Li H, Huang B J et al. Multi-channel Silicon Photonic Receiver based on Compact Second-order Microring Resonators[J]. Optics Communications, 437, 168-173(2019).

    [31] Nasaban Shotorban A K N, Abedi K, Jafari K. Design and Analysis of an SOI Photonic Filter based on a Microring[C], 8786445(2019).

    [32] Chen B, Zhang Z Y, Dai T G et al. Silicon-based MZI-embedded Microring Array with Hitless and FSR-alignment-free Wavelength Selection[J]. IEEE Photonics Technology Letters, 34, 436-439(2022).

    [33] Zhang W F, Zhou L, Xu Y W et al. Optical Spectral Shaping based on Reconfigurable Integrated Microring Resonator-coupled Fabry-Perot Cavity[J]. Journal of Lightwave Technology, 40, 7375-7382(2022).

    [34] Niehusmann J, Vörckel A, Bolivar P H et al. Ultrahigh-quality-factor Silicon-on-insulator Microring Resonator[J]. Optics Letters, 29, 2861-2863(2004).

    [35] Xu Q, Schmidt B, Pradhan S et al. Micrometre-scale Silicon Electro-optic Modulator[J]. Nature, 435, 325-327(2005).

    [36] Maine S, Marris-Morini D, Vivien L et al. Design, Fabrication and Characterization of High Q-factor SOI Microring Resonators[C], 4347704(2007).

    [37] Qiu H Q, Zhou F, Yao Y H et al. A Tunable Narrowband Microwave Photonic Bandpass Filter with an Ultra-high-Q Silicon Microring Resonator[C], 158(2018).

    [38] Mo W Q, Fu X Y, Jin F et al. Design and Experiment of a Cantilever Beam Pressure Sensor Using an Optical Microring Resonator[J]. Optik, 243, 167466(2021).

    [39] Zheng S N, Zou J, Cai H et al. Microring Resonator-assisted Fourier Transform Spectrometer with Enhanced Resolution and Large Bandwidth in Single Chip Solution[J]. Nature Communications, 10, 2349-2356(2019).

    [40] Lee H, Li T T, Wang Z et al. Spatially Locked Mode in Defected Microring Resonators[C], 8749678(2019).

    [41] Luo M D, Yang Q, Huang L Y et al. Silicon Photonic Electric Field Sensor based on Electro-optical Effect and Micro-ring Resonator[C], 9475766(2021).

    [42] Ding Z Q, Sun J L, Li C H et al. Broadband Ultrasound Detection Using Silicon Micro-ring Resonators[J]. Journal of Lightwave Technology, 41, 1906-1910(2023).

    [43] Yu Y, Cui S, Yang G J et al. ANN-assisted High-resolution and Large Dynamic Range Temperature Sensor based on Simultaneous Microwave Photonic and Optical Measurements[J]. IEEE Sensors Journal, 23, 1105-1114(2023).

    [44] Schuler S, Muench J E, Ruocco A et al. High-responsivity Graphene Photodetectors Integrated on Silicon Microring Resonators[J]. Nature Communications, 12, 3733-3742(2021).

    [45] Hamacher M, Troppenz U, Heidrich H et al. Active Ring Resonators based on GaInAsP/InP[C], 12.472816(2002).

    [46] Levy J S, Gondarenko A, Foster M A et al. CMOS-compatible Multiple-wavelength Oscillator for On-chip Optical Interconnects[J]. Nature Photonics, 4, 37-40(2010).

    [47] Pfeiffer M H P, Kordts A, Brasch V et al. Photonic Damascene Process for Integrated High-Q Microresonator based Nonlinear Photonics[J]. Optica, 3, 20-25(2016).

    [48] Choure K K, Saharia A, Mudgal N et al. Reconfigurable and Compact Reversible Channel Multiplexers Using Si3N4 based Optical Microring Resonator[J]. Optics Communications, 530, 129126(2023).

    [49] Cui T, Liu D P, Liu F Y et al. Tunable Optoelectronic Oscillator based on a High-Q Microring Resonator[J]. Optics Communications, 536, 129299(2023).

    [50] Zhang Z, Huang B J, Zhang X et al. Monolithic Integration of Si3N4 Microring Filters with Bulk CMOS IC through Post-Backend Process[J]. IEEE Photonics Technology Letters, 27, 1543-1546(2015).

    [51] Yang H M, Zheng P F, Liu P P et al. Design of Polarization-insensitive 2×2 Multimode Interference Coupler based on Double Strip Silicon Nitride Waveguides[J]. Optics Communications, 410, 559-564(2018).

    [52] Nambiar S, Kumar A, Kallega R et al. High-efficiency Grating Coupler in 400 nm and 500 nm PECVD Silicon Nitride with Bottom Reflector[J]. IEEE Photonics Journal, 11, 2201213(2019).

    [53] Dabos G, Manolis A, Giesecke A L et al. TM Grating Coupler on Low-loss LPCVD based Si3N4 Waveguide Platform[J]. Optics Communications, 405, 35-38(2017).

    [54] Sacher W D, Mikkelsen J C, Dumais P et al. Tri-layer Silicon Nitride-on-silicon Photonic Platform for Ultra-low-loss Crossings and Interlayer Transitions[J]. Optics Express, 25, 30862-30875(2017).

    [55] Gao G, Chen D G, Tao S Q et al. Silicon Nitride O-band (de) Multiplexers with Low Thermal Sensitivity[J]. Optics Express, 25, 12260-12267(2017).

    [56] Hashida R, Sasaki T, Hane K. GaN Microring Waveguide Bonded to Si Substrate by Polymer[C], 8051464(2017).

    [57] de Goede M, Dijkstra M, García-Blanco S M. Towards an Active Biosensing Platform in Rare-earth Ion Doped Al2O3 Microring Resonators[C], 8025016(2017).

    [58] Amiri I S, Ariannejad M M, Daud S et al. High Sensitive Temperature Sensor Silicon-based Microring Resonator Using the Broadband Input Spectrum[J]. Results in Physics, 9, 1578-1584(2018).

    [59] Stern B, Ji X C, Dutt A et al. Compact Narrow-linewidth Integrated Laser based on a Low-loss Silicon Nitride Ring Resonator[J]. Optics Letters, 42, 4541-4544(2017).

    [60] Zhang C, Kang G G, Wang J et al. Photonic Thermometer by Silicon Nitride Microring Resonator with Milli-kelvin Self-heating Effect[J]. Measurement, 188, 110494(2022).

    [61] Jayakrishnan K, Hitaishi V, Ashok N. Slot Waveguide Microring Resonator based on Silicon Nitride for Refractive Index Sensing[C], 9828972(2022).

    [62] Karempudi V S P, Thakkar I G, Hastings J T. A Silicon Nitride Microring based High-Speed, Tuning-Efficient, Electro-refractive Modulator[C], 10026902(2022).

    [63] Boust S, El Dirani H, Duport F et al. Compact Optical Frequency Comb Source based on a DFB Butt-coupled to a Silicon Nitride Microring[C], 8892102(2019).

    [64] Bahadori M, Yang Y, Goddard L L et al. High Performance Fully Etched Isotropic Microring Resonators in Thin-film Lithium Niobate on Insulator Platform[J]. Optics Express, 27, 22025-22039(2019).

    [65] Ahmed A N R, Shi S Y, Zablocki M et al. Tunable Hybrid Silicon Nitride and Thin-film Lithium Niobate Electro-optic Microresonator[J]. Optics Letters, 44, 618-621(2019).

    [66] Ding Y D, Tao S Q, Pan A et al. GHz-bandwidth Optical Filters based on High-order Lithium Niobate Microring Resonators[C], 9738276(2021).

    [67] Xu Y T, Shen M H, Lu J J et al. Mitigating Photorefractive Effect in Thin-film Lithium Niobate Microring Resonators[J]. Optics Express, 29, 5497-5504(2021).

    [68] Chen L, Reano R M. Compact Electric Field Sensors based on Indirect Bonding of Lithium Niobate to Silicon Microrings[J]. Optics Express, 20, 4032-4038(2012).

    [69] Yao Z S, Wu K Y, Tan B X et al. Integrated Silicon Photonic Microresonators: Emerging Technologies[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 5900324(2018).

    [70] Ding Y D, Tao S Q, Wang X H et al. Thermo-optic Tunable Optical Filters with GHz-bandwidth and Flat-top Passband on Thin Film Lithium Niobate Platform[J]. Optics Express, 30, 22135-22142(2022).

    [71] Liu X Y, He M B, Pan Y et al. High Quality Factor Hybrid Silicon and Lithium Niobate Micro-Ring Resonators[C], 8989006(2019).

    [72] Uddin M A, Dey U K, Akter M. Detecting Various Chemical Samples and Cancer Cells with a Bio-chemical Sensor by Using LNOI based Optical Micro Ring Resonator (OMRR)[C], 9795853(2022).

    [73] Cong R, Li S M, Pan S L. Notch/Bandpass Microwave Photonic Filter based on a Microring Resonator and a LiNbO3 Phase Modulator[C], 8803916(2019).

    [74] Uddin M A, Maswood M M S, Dey U K et al. A Novel Optical Micro Ring Resonator Biosensor Design Using Lithium Niobate on Insulator (LNOI) to Detect the Concentration of Glucose[C], 9257944(2020).

    [75] Desiatov B, Shams-Ansari A, Zhang M et al. Ultra-low-loss Integrated Visible Photonics Using Thin-film Lithium Niobate[J]. Optica, 6, 380-384(2019).

    [76] Wang J Q, Cheng Z Z, Shu C et al. Optical Absorption in Graphene-on-silicon Nitride Microring Resonators[J]. IEEE Photonics Technology Letters, 27, 1765-1767(2015).

    [77] Bagheri A, Nazari F, Moravvej-Farshi M K. Tunable Optical Demultiplexer for Dense Wavelength Division Multiplexing Systems Using Graphene-Silicon Microring Resonators[J]. Journal of Electronic Materials, 49, 7410-7419(2020).

    [78] Rath P, Gruhler N, Khasminskaya S et al. Waferscale Nanophotonic Circuits Made from Diamond-on-insulator Substrates[J]. Optics Express, 21, 11031-11036(2013).

    [79] Wu Y H, Zong R S, Han H P et al. Design of an Electro-optical Tunable Race-track Diamond Microring Resonator on Lithium Niobate[J]. Diamond and Related Materials, 120, 108692(2021).

    [80] Haavisto J, Pajer G A. Resonance Effects in Low-loss Ring Waveguides[J]. Optics Letters, 5, 510-512(1980).

    [81] Hida Y, Izawa T, Imamura S. Ring Resonator Composed of Low Loss Polymer Waveguides at 1.3 μm[J]. Electronics Letters, 28, 1314-1316(1992).

    [82] OU X P, YANG Z L, TANG B et al. Silicon Photonic 2.5D/3D Integration Technology and Its Applications[J]. Study on Optical Communications, 1-16(2023).

    Linjun HOU, Song FENG, Jie OUYANG, Xiangjian HU, Haojie LI, Shaokai GUO, Yong LIU, Di WANG, Menglin CHEN, Lulu FENG, Ran ZHOU, Jianyang WU, Yuling ZENG, Xinyi HE. Research Progress of Silicon based Micro Ring Resonators[J]. Study On Optical Communications, 2024, 50(6): 23008401
    Download Citation