[1] Geuzebroek D H, Driessen A. Ring-resonator-based Wavelength Filters[M]. Wavelength Filters in Fibre Optics(2006).
[2] Sun Y, Fan X. Optical Ring Resonators for Biochemical and Chemical Sensing[J]. Analytical and Bioanalytical Chemistry, 399, 205-211(2011).
[3] Steglich P, Hülsemann M, Dietzel B et al. Optical Biosensors based on Silicon-on-insulator Ring Resonators: a Review[J]. Molecules, 24, 519-534(2019).
[4] Marris-Morini D, Vivien L, Fédéli J M et al. Low Loss and High Speed Silicon Optical Modulator based on a Lateral Carrier Depletion Structure[J]. Optics Express, 16, 334-339(2008).
[5] Green W M, Rooks M J, Sekaric L et al. Ultra-compact, Low RF Power, 10 Gb/s Silicon Mach-Zehnder Modulator[J]. Optics Express, 5, 17106-17113(2007).
[6] Roelkens G, Liu L, Liang D et al. III-V/Silicon Photonics for On-chip and Intra-chip Optical Interconnects[J]. Laser & Photonics Reviews, 4, 751-779(2010).
[7] Van Campenhout J, Rojo Romeo P, Regreny P et al. Electrically Pumped InP-based Microdisk Lasers Integrated with a Nanophotonic Silicon-on-insulator Waveguide Circuit[J]. Optics Express, 15, 6744-6749(2007).
[8] Yu J Z[M]. Silicon Photonics(2011).
[9] Griffith A, Cardenas J, Poitras C B et al. High Quality Factor and High Confinement Silicon Resonators Using Etchless Process[C], 6325465(2012).
[10] Biberman A, Shaw M J, Timurdogan E et al. Ultralow-loss Silicon Ring Resonators[J]. Optics Letters, 37, 4236-4238(2012).
[11] Soltanian M R K, Amiri I S, Chong W Y et al. Stable Dual-wavelength Coherent Source with Tunable Wavelength Spacing Generated by Spectral Slicing a Mode-locked Laser Using Microring Resonator[J]. IEEE Photonics Journal, 7, 1504311(2015).
[12] Zhang W, Yao J. All-optically Controlled Fabry-Perot Cavity-assisted Add-drop Microring Resonator on a Silicon Chip[C], 7183916(2015).
[13] Ji X, Barbosa F A S, Roberts S P et al. Ultra-low-loss On-chip Resonators with Sub-milliwatt Parametric Oscillation Threshold[J]. Optica, 4, 619(2017).
[14] Tu X, Chen S L, Song C et al. Ultrahigh Q Polymer Microring Resonators for Biosensing Applications[J]. IEEE Photonics Journal, 11, 4200110(2019).
[15] Zhang L, Jie L, Zhang M et al. Ultrahigh-Q Silicon Racetrack Resonators[J]. Photonics Research, 8, 684-689(2020).
[16] Nijem J, Naiman A, Zektzer R et al. High Q-factor Microring Resonator Using Local Oxidation of Silicon (LOCOS) and Adiabatic Geometry[C], 9571758(2021).
[17] Saharia A, Mudgal N, Choure K K et al. Proposed All-optical Read-only Memory Element Employing Si3N4 based Optical Microring Resonator[J]. Optik, 251, 168493(2022).
[18] Van V, Absil P P, Hryniewicz J V et al. Propagation Loss in Single-mode GaAs-AlGaAs Microring Resonators: Measurement and Model[J]. Journal of Lightwave Technology, 19, 1734-1739(2001).
[19] Scheuer J, Yadin Y, Margalit M. Vertically Coupled Glass Microring Resonator Channel Dropping Filters[P].
[20] Cohen R A, Amrani O, Ruschin S. Response Shaping with a Silicon Ring Resonator via Double Injection[J]. Nature Photonics, 12, 706-712(2018).
[21] Gumelar M R, Purnamaningsih R W. Modelling a Racetrack-shaped Microring-resonator-based Add-drop Filter in GaN/Sapphire[C], 9205083(2020).
[22] Yin Y X, Yin X J, Zhang X P et al. High-Q-factor Silica-based Racetrack Microring Resonators[J]. Photonics, 8, 43-51(2021).
[23] Sun T, Niu W, Xia M. Racetrack Microring Resonator with Improved Quality Factor based on Asymmetric Waveguide Bend[J]. Optics Communications, 529, 129092(2023).
[24] Zhang Y, Hu X, Chen D et al. Design and Demonstration of Ultra-high-Q Silicon Microring Resonator based on a Multi-mode Ridge Waveguide[J]. Optics Letters, 43, 1586-1589(2018).
[25] Cai D P, Lu J H, Chen C C et al. High Q-factor Microring Resonator Wrapped by the Curved Waveguide[J]. Scientific Reports, 5, 10078(2015).
[26] Chamorro-Posada P, Baños R. Design and Characterization of Q-enhanced Silicon Nitride Racetrack Micro-Resonators[J]. Journal of Lightwave Technology, 39, 2917-2923(2021).
[27] Tobing L Y M, Dumon P, Baets R et al. Boxlike Filter Response based on Complementary Photonic Bandgaps in Two-dimensional Microresonator Arrays[J]. Optics Letters, 33, 2512-2514(2008).
[28] Hu Y T, Zhang L, Xiao X et al. 80 Gb/s Photonic Temporal Differentiator based on Cascaded SOI Microring Resonators[C], 6053718(2011).
[29] Liu L, He M Y, Dong J J. Compact Continuously Tunable Microwave Photonic Filters based on Cascaded Silicon Microring Resonators[J]. Optics Communications, 363, 128-133(2016).
[30] Zhang Z, Li H, Huang B J et al. Multi-channel Silicon Photonic Receiver based on Compact Second-order Microring Resonators[J]. Optics Communications, 437, 168-173(2019).
[31] Nasaban Shotorban A K N, Abedi K, Jafari K. Design and Analysis of an SOI Photonic Filter based on a Microring[C], 8786445(2019).
[32] Chen B, Zhang Z Y, Dai T G et al. Silicon-based MZI-embedded Microring Array with Hitless and FSR-alignment-free Wavelength Selection[J]. IEEE Photonics Technology Letters, 34, 436-439(2022).
[33] Zhang W F, Zhou L, Xu Y W et al. Optical Spectral Shaping based on Reconfigurable Integrated Microring Resonator-coupled Fabry-Perot Cavity[J]. Journal of Lightwave Technology, 40, 7375-7382(2022).
[34] Niehusmann J, Vörckel A, Bolivar P H et al. Ultrahigh-quality-factor Silicon-on-insulator Microring Resonator[J]. Optics Letters, 29, 2861-2863(2004).
[35] Xu Q, Schmidt B, Pradhan S et al. Micrometre-scale Silicon Electro-optic Modulator[J]. Nature, 435, 325-327(2005).
[36] Maine S, Marris-Morini D, Vivien L et al. Design, Fabrication and Characterization of High Q-factor SOI Microring Resonators[C], 4347704(2007).
[37] Qiu H Q, Zhou F, Yao Y H et al. A Tunable Narrowband Microwave Photonic Bandpass Filter with an Ultra-high-Q Silicon Microring Resonator[C], 158(2018).
[38] Mo W Q, Fu X Y, Jin F et al. Design and Experiment of a Cantilever Beam Pressure Sensor Using an Optical Microring Resonator[J]. Optik, 243, 167466(2021).
[39] Zheng S N, Zou J, Cai H et al. Microring Resonator-assisted Fourier Transform Spectrometer with Enhanced Resolution and Large Bandwidth in Single Chip Solution[J]. Nature Communications, 10, 2349-2356(2019).
[40] Lee H, Li T T, Wang Z et al. Spatially Locked Mode in Defected Microring Resonators[C], 8749678(2019).
[41] Luo M D, Yang Q, Huang L Y et al. Silicon Photonic Electric Field Sensor based on Electro-optical Effect and Micro-ring Resonator[C], 9475766(2021).
[42] Ding Z Q, Sun J L, Li C H et al. Broadband Ultrasound Detection Using Silicon Micro-ring Resonators[J]. Journal of Lightwave Technology, 41, 1906-1910(2023).
[43] Yu Y, Cui S, Yang G J et al. ANN-assisted High-resolution and Large Dynamic Range Temperature Sensor based on Simultaneous Microwave Photonic and Optical Measurements[J]. IEEE Sensors Journal, 23, 1105-1114(2023).
[44] Schuler S, Muench J E, Ruocco A et al. High-responsivity Graphene Photodetectors Integrated on Silicon Microring Resonators[J]. Nature Communications, 12, 3733-3742(2021).
[45] Hamacher M, Troppenz U, Heidrich H et al. Active Ring Resonators based on GaInAsP/InP[C], 12.472816(2002).
[46] Levy J S, Gondarenko A, Foster M A et al. CMOS-compatible Multiple-wavelength Oscillator for On-chip Optical Interconnects[J]. Nature Photonics, 4, 37-40(2010).
[47] Pfeiffer M H P, Kordts A, Brasch V et al. Photonic Damascene Process for Integrated High-Q Microresonator based Nonlinear Photonics[J]. Optica, 3, 20-25(2016).
[48] Choure K K, Saharia A, Mudgal N et al. Reconfigurable and Compact Reversible Channel Multiplexers Using Si3N4 based Optical Microring Resonator[J]. Optics Communications, 530, 129126(2023).
[49] Cui T, Liu D P, Liu F Y et al. Tunable Optoelectronic Oscillator based on a High-Q Microring Resonator[J]. Optics Communications, 536, 129299(2023).
[50] Zhang Z, Huang B J, Zhang X et al. Monolithic Integration of Si3N4 Microring Filters with Bulk CMOS IC through Post-Backend Process[J]. IEEE Photonics Technology Letters, 27, 1543-1546(2015).
[51] Yang H M, Zheng P F, Liu P P et al. Design of Polarization-insensitive 2×2 Multimode Interference Coupler based on Double Strip Silicon Nitride Waveguides[J]. Optics Communications, 410, 559-564(2018).
[52] Nambiar S, Kumar A, Kallega R et al. High-efficiency Grating Coupler in 400 nm and 500 nm PECVD Silicon Nitride with Bottom Reflector[J]. IEEE Photonics Journal, 11, 2201213(2019).
[53] Dabos G, Manolis A, Giesecke A L et al. TM Grating Coupler on Low-loss LPCVD based Si3N4 Waveguide Platform[J]. Optics Communications, 405, 35-38(2017).
[54] Sacher W D, Mikkelsen J C, Dumais P et al. Tri-layer Silicon Nitride-on-silicon Photonic Platform for Ultra-low-loss Crossings and Interlayer Transitions[J]. Optics Express, 25, 30862-30875(2017).
[55] Gao G, Chen D G, Tao S Q et al. Silicon Nitride O-band (de) Multiplexers with Low Thermal Sensitivity[J]. Optics Express, 25, 12260-12267(2017).
[56] Hashida R, Sasaki T, Hane K. GaN Microring Waveguide Bonded to Si Substrate by Polymer[C], 8051464(2017).
[57] de Goede M, Dijkstra M, García-Blanco S M. Towards an Active Biosensing Platform in Rare-earth Ion Doped Al2O3 Microring Resonators[C], 8025016(2017).
[58] Amiri I S, Ariannejad M M, Daud S et al. High Sensitive Temperature Sensor Silicon-based Microring Resonator Using the Broadband Input Spectrum[J]. Results in Physics, 9, 1578-1584(2018).
[59] Stern B, Ji X C, Dutt A et al. Compact Narrow-linewidth Integrated Laser based on a Low-loss Silicon Nitride Ring Resonator[J]. Optics Letters, 42, 4541-4544(2017).
[60] Zhang C, Kang G G, Wang J et al. Photonic Thermometer by Silicon Nitride Microring Resonator with Milli-kelvin Self-heating Effect[J]. Measurement, 188, 110494(2022).
[61] Jayakrishnan K, Hitaishi V, Ashok N. Slot Waveguide Microring Resonator based on Silicon Nitride for Refractive Index Sensing[C], 9828972(2022).
[62] Karempudi V S P, Thakkar I G, Hastings J T. A Silicon Nitride Microring based High-Speed, Tuning-Efficient, Electro-refractive Modulator[C], 10026902(2022).
[63] Boust S, El Dirani H, Duport F et al. Compact Optical Frequency Comb Source based on a DFB Butt-coupled to a Silicon Nitride Microring[C], 8892102(2019).
[64] Bahadori M, Yang Y, Goddard L L et al. High Performance Fully Etched Isotropic Microring Resonators in Thin-film Lithium Niobate on Insulator Platform[J]. Optics Express, 27, 22025-22039(2019).
[65] Ahmed A N R, Shi S Y, Zablocki M et al. Tunable Hybrid Silicon Nitride and Thin-film Lithium Niobate Electro-optic Microresonator[J]. Optics Letters, 44, 618-621(2019).
[66] Ding Y D, Tao S Q, Pan A et al. GHz-bandwidth Optical Filters based on High-order Lithium Niobate Microring Resonators[C], 9738276(2021).
[67] Xu Y T, Shen M H, Lu J J et al. Mitigating Photorefractive Effect in Thin-film Lithium Niobate Microring Resonators[J]. Optics Express, 29, 5497-5504(2021).
[68] Chen L, Reano R M. Compact Electric Field Sensors based on Indirect Bonding of Lithium Niobate to Silicon Microrings[J]. Optics Express, 20, 4032-4038(2012).
[69] Yao Z S, Wu K Y, Tan B X et al. Integrated Silicon Photonic Microresonators: Emerging Technologies[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 5900324(2018).
[70] Ding Y D, Tao S Q, Wang X H et al. Thermo-optic Tunable Optical Filters with GHz-bandwidth and Flat-top Passband on Thin Film Lithium Niobate Platform[J]. Optics Express, 30, 22135-22142(2022).
[71] Liu X Y, He M B, Pan Y et al. High Quality Factor Hybrid Silicon and Lithium Niobate Micro-Ring Resonators[C], 8989006(2019).
[72] Uddin M A, Dey U K, Akter M. Detecting Various Chemical Samples and Cancer Cells with a Bio-chemical Sensor by Using LNOI based Optical Micro Ring Resonator (OMRR)[C], 9795853(2022).
[73] Cong R, Li S M, Pan S L. Notch/Bandpass Microwave Photonic Filter based on a Microring Resonator and a LiNbO3 Phase Modulator[C], 8803916(2019).
[74] Uddin M A, Maswood M M S, Dey U K et al. A Novel Optical Micro Ring Resonator Biosensor Design Using Lithium Niobate on Insulator (LNOI) to Detect the Concentration of Glucose[C], 9257944(2020).
[75] Desiatov B, Shams-Ansari A, Zhang M et al. Ultra-low-loss Integrated Visible Photonics Using Thin-film Lithium Niobate[J]. Optica, 6, 380-384(2019).
[76] Wang J Q, Cheng Z Z, Shu C et al. Optical Absorption in Graphene-on-silicon Nitride Microring Resonators[J]. IEEE Photonics Technology Letters, 27, 1765-1767(2015).
[77] Bagheri A, Nazari F, Moravvej-Farshi M K. Tunable Optical Demultiplexer for Dense Wavelength Division Multiplexing Systems Using Graphene-Silicon Microring Resonators[J]. Journal of Electronic Materials, 49, 7410-7419(2020).
[78] Rath P, Gruhler N, Khasminskaya S et al. Waferscale Nanophotonic Circuits Made from Diamond-on-insulator Substrates[J]. Optics Express, 21, 11031-11036(2013).
[79] Wu Y H, Zong R S, Han H P et al. Design of an Electro-optical Tunable Race-track Diamond Microring Resonator on Lithium Niobate[J]. Diamond and Related Materials, 120, 108692(2021).
[80] Haavisto J, Pajer G A. Resonance Effects in Low-loss Ring Waveguides[J]. Optics Letters, 5, 510-512(1980).
[81] Hida Y, Izawa T, Imamura S. Ring Resonator Composed of Low Loss Polymer Waveguides at 1.3 μm[J]. Electronics Letters, 28, 1314-1316(1992).
[82] OU X P, YANG Z L, TANG B et al. Silicon Photonic 2.5D/3D Integration Technology and Its Applications[J]. Study on Optical Communications, 1-16(2023).