• Journal of Atmospheric and Environmental Optics
  • Vol. 16, Issue 3, 207 (2021)
Dongshang YANG1、2、*, Yi ZENG1, Yuhan LUO1, Haijin ZHOU1, Fuqi SI1, and Wenqing LIU1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1673-6141.2021.03.005 Cite this Article
    YANG Dongshang, ZENG Yi, LUO Yuhan, ZHOU Haijin, SI Fuqi, LIU Wenqing. Monitoring Australia′s Forest Fires Based on EMI Remote Sensing NO2 Technology[J]. Journal of Atmospheric and Environmental Optics, 2021, 16(3): 207 Copy Citation Text show less
    References

    [1] Mayor A G, Valdecantos A, Vallejo V R, et al. Fire-induced pine woodland to shrubland transitions in Southern Europe may promote shifts in soil fertility[J]. Science of the Total Environment, 2016, 573: 1232-1241.

    [2] Liu J C, Mickley L J, Sulprizio M P, et al. Future respiratory hospital admissions from wildfire smoke under climate change in the Western US[J]. Environmental Research Letters, 2016, 11(12): 124018.

    [3] Pereira P, Rein G, Martin D. Past and present post-fire environments[J]. Science of the Total Environment, 2016, 573: 1275-1277.

    [4] Bowman D M J S, Williamson G J, Price O F, et al. Australian forests, megafires and the risk of dwindling carbon stocks[J]. Plant, Cell & Environment, 2021, 44(2): 347-355.

    [5] Xiang Llinchuan, Wang Qiuhua, Long Tengteng, et al. A review of research establishment on forest fire combustion products[J]. Forest Fire Prevention, 2020, (3): 28-33.

    [6] Cahoon D R, Stocks B J, Levine J S, et al. Satellite analysis of the severe 1987 forest-fires in northern China and southeastern Siberia[J]. Journal of Geophysical Research-Atmospheres, 1994, 99(D9): 18627-18638.

    [7] Theys N, Volkamer R, Mueller J F, et al. Global nitrous acid emissions and levels of regional oxidants enhanced by wildfires[J]. Nature Geoscience, 2020, 13(10): 686.

    [8] Zhang Yong. Experience and lessons learned from Australia bushfires[J]. China Emergency Rescue, 2020, (2): 8-12.

    [9] Zhang C X, Liu C, Chan K L, et al. First observation of tropospheric nitrogen dioxide from the environmental trace gases monitoring instrument onboard the GaoFen-5 satellite[J]. Light: Science & Applications, 2020, 9(1): 66.

    [10] Cheng L X, Tao J H, Valks P, et al. NO2 retrieval from the environmental trace gases monitoring instrument (EMI): Preliminary results and intercomparison with OMI and TROPOMI[J]. Remote Sensing, 2019, 11(24): 3017.

    [11] Merienne M F, Jenouvrier A, Coquart B, et al. The NO2 absorption spectrum. IV: The 200-400 nm region at 220 K[J]. Journal of Atmospheric Chemistry, 1997, 27(3): 219-232.

    [12] Bogumil K, Orphal J, Homann T, et al. Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: Instrument characterization and reference data for atmospheric remote-sensing in the 230-2380 nm region[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 157(2-3): 167-184.

    [13] Keller-Rudek H, Moortgat G K, Sander R, et al. The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest[J]. Earth System Science Data, 2013, 5(2): 365-373.

    [14] Zhang Chengxin. Tropospheric Nitrogen Dioxide Retrieval From Satellite UV-Vis Spectrometers and Its Applications[D]. Hefei: University of Science and Technology of China, 2020.

    YANG Dongshang, ZENG Yi, LUO Yuhan, ZHOU Haijin, SI Fuqi, LIU Wenqing. Monitoring Australia′s Forest Fires Based on EMI Remote Sensing NO2 Technology[J]. Journal of Atmospheric and Environmental Optics, 2021, 16(3): 207
    Download Citation