• Chinese Journal of Lasers
  • Vol. 49, Issue 14, 1402205 (2022)
Peixin Jin, Zhaodong Zhang*, Zicheng Ma, Gang Song, and Liming Liu
Author Affiliations
  • Key Laboratory of Advanced Connection Technology of Liaoning Province, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
  • show less
    DOI: 10.3788/CJL202249.1402205 Cite this Article Set citation alerts
    Peixin Jin, Zhaodong Zhang, Zicheng Ma, Gang Song, Liming Liu. Effect of Stacking Path on Laser Induced MIG Additive 2319 Aluminum Alloy[J]. Chinese Journal of Lasers, 2022, 49(14): 1402205 Copy Citation Text show less
    Schematic of low power laser induced MIG arc additive process
    Fig. 1. Schematic of low power laser induced MIG arc additive process
    Single layer stripe covering deposition mode
    Fig. 2. Single layer stripe covering deposition mode
    Schematics of two different deposition paths. (a) Unidirectional linear deposition; (b) crisscross deposition
    Fig. 3. Schematics of two different deposition paths. (a) Unidirectional linear deposition; (b) crisscross deposition
    Schematic of tensile sampling
    Fig. 4. Schematic of tensile sampling
    Macroscopic cross-sectional fusion morphologies under different deposition paths. (a) Unidirectional linear deposition; (b) crisscross deposition
    Fig. 5. Macroscopic cross-sectional fusion morphologies under different deposition paths. (a) Unidirectional linear deposition; (b) crisscross deposition
    Microstructures at different positions under unidirectional linear deposition. (a) Bottom; (b) middle; (c) top
    Fig. 6. Microstructures at different positions under unidirectional linear deposition. (a) Bottom; (b) middle; (c) top
    Microstructures at different positions under crisscross deposition. (a) Bottom; (b) middle; (c) top
    Fig. 7. Microstructures at different positions under crisscross deposition. (a) Bottom; (b) middle; (c) top
    Microstructures of transition zone under different deposition paths. (a)(b) Unidirectional linear deposition; (c)(d) crisscross deposition
    Fig. 8. Microstructures of transition zone under different deposition paths. (a)(b) Unidirectional linear deposition; (c)(d) crisscross deposition
    EDS results of sedimentary layer. (a) Microstructure under high magnification; (b) EDS result at point 1; (c) EDS result at point 2
    Fig. 9. EDS results of sedimentary layer. (a) Microstructure under high magnification; (b) EDS result at point 1; (c) EDS result at point 2
    SEM images under different deposition paths. (a)(b) Unidirectional linear deposition; (c)(d) crisscross deposition
    Fig. 10. SEM images under different deposition paths. (a)(b) Unidirectional linear deposition; (c)(d) crisscross deposition
    Cloud maps of hardness distributions under different deposition paths. (a)(b) Unidirectional linear deposition; (c)(d) crisscross deposition
    Fig. 11. Cloud maps of hardness distributions under different deposition paths. (a)(b) Unidirectional linear deposition; (c)(d) crisscross deposition
    Tensile property
    Fig. 12. Tensile property
    SEM images of fractures for tensile test specimens under different deposition paths. (a) Unidirectional linear deposition; (b) crisscross deposition
    Fig. 13. SEM images of fractures for tensile test specimens under different deposition paths. (a) Unidirectional linear deposition; (b) crisscross deposition
    CompositionCuSiMnFeZrVTiZnAl
    Mass fraction /%5.80-6.800.040.20-0.400.300.10-0.250.070.10-0.20≤0.10Bal.
    Table 1. Chemical compositions of ER2319 welding wire
    Peixin Jin, Zhaodong Zhang, Zicheng Ma, Gang Song, Liming Liu. Effect of Stacking Path on Laser Induced MIG Additive 2319 Aluminum Alloy[J]. Chinese Journal of Lasers, 2022, 49(14): 1402205
    Download Citation