• Photonics Research
  • Vol. 12, Issue 10, 2198 (2024)
Hailun Xie, Lili Gui*, Xiangxiang Zhou, Yue Zhou, and Kun Xu
Author Affiliations
  • State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • show less
    DOI: 10.1364/PRJ.528105 Cite this Article Set citation alerts
    Hailun Xie, Lili Gui, Xiangxiang Zhou, Yue Zhou, Kun Xu, "Less is more: surface-lattice-resonance-enhanced aluminum metasurface with giant saturable absorption for a wavelength-tunable Q-switched Yb-doped fiber laser," Photonics Res. 12, 2198 (2024) Copy Citation Text show less
    References

    [1] M. Sharma, M. Tal, C. McDonnell. Electrically and all-optically switchable nonlocal nonlinear metasurfaces. Sci. Adv., 9, eadh2353(2023).

    [2] D. Hahnel, C. Golla, M. Albert. A multi-mode super-Fano mechanism for enhanced third harmonic generation in silicon metasurfaces. Light Sci. Appl., 12, 97(2023).

    [3] M. Tal, S. Keren-Zur, T. Ellenbogen. Nonlinear plasmonic metasurface terahertz emitters for compact terahertz spectroscopy systems. ACS Photonics, 7, 3286-3290(2020).

    [4] C. Gigli, G. Marino, A. Artioli. Tensorial phase control in nonlinear meta-optics. Optica, 8, 269-296(2021).

    [5] M. Mesch, B. Metzger, M. Hentschel. Nonlinear plasmonic sensing. Nano Lett., 16, 3155-3159(2016).

    [6] C. Langhammer, M. Schwind, B. Kasemo. Localized surface plasmon resonances in aluminum nanodisks. Nano Lett., 8, 1461-1471(2008).

    [7] T. Stolt, A. Vesala, H. Rekola. Multiply-resonant second-harmonic generation using surface lattice resonances in aluminum metasurfaces. Opt. Express, 30, 3620-3631(2022).

    [8] C.-W. Cheng, S. S. Raja, C.-W. Chang. Epitaxial aluminum plasmonics covering full visible spectrum. Nanophotonics, 10, 627-637(2020).

    [9] J. Wang, A. Coillet, O. Demichel. Saturable plasmonic metasurfaces for laser mode locking. Light Sci. Appl., 9, 50(2020).

    [10] R. H. Siddique, S. Kumar, V. Narasimhan. Aluminum metasurface with hybrid multipolar plasmons for 1000-fold broadband visible fluorescence enhancement and multiplexed biosensing. ACS Nano, 13, 13775-13783(2019).

    [11] G. Albrecht, M. Ubl, S. Kaiser. Comprehensive study of plasmonic materials in the visible and near-infrared: linear, refractory, and nonlinear optical properties. ACS Photonics, 5, 1058-1067(2018).

    [12] R. Dhama, A. Panahpour, T. Pihlava. All-optical switching based on plasmon-induced enhancement of index of refraction. Nat. Commun., 13, 3114(2022).

    [13] M. S. Bin-Alam, O. Reshef, Y. Mamchur. Ultra-high-Q resonances in plasmonic metasurfaces. Nat. Commun., 12, 974(2021).

    [14] L. Michaeli, S. Keren-Zur, O. Avayu. Nonlinear surface lattice resonance in plasmonic nanoparticle arrays. Phys. Rev. Lett., 118, 243904(2017).

    [15] Q. Ling, Q. Liang, X. Zhang. Toroidal electric dipole enabled chiral surface lattice resonances in stereo propeller metasurfaces. APL Photonics, 8, 086114(2023).

    [16] A. Han, C. Dineen, V. E. Babicheva. Second harmonic generation in metasurfaces with multipole resonant coupling. Nanophotonics, 9, 3545-3556(2020).

    [17] D. C. Hooper, C. Kuppe, D. Wang. Second harmonic spectroscopy of surface lattice resonances. Nano Lett., 19, 165-172(2018).

    [18] R. Czaplicki, A. Kiviniemi, M. J. Huttunen. Less is more: enhancement of second-harmonic generation from metasurfaces by reduced nanoparticle density. Nano Lett., 18, 7709-7714(2018).

    [19] S. Gräf, G. Staupendahl, A. Krämer. High precision materials processing using a novel Q-switched CO2 laser. Opt. Laser Eng., 66, 152-157(2015).

    [20] J. J. Degnan. Satellite laser ranging: current status and future prospects. IEEE Trans. Geosci. Remote, GE-23, 398-413(1985).

    [21] X. Lei, C. Wieschendorf, L. Hao. Compact actively Q-switched laser for sensing applications. Measurement, 173, 108631(2021).

    [22] Z. Luo, M. Zhou, J. Weng. Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser. Opt. Lett., 35, 3709-3711(2010).

    [23] Z. Fang, C. Zhang, J. Liu. 3.46 μm Q-switched Er3+:ZBLAN fiber laser based on a semiconductor saturable absorber mirror. Opt. Laser Technol., 141, 107131(2021).

    [24] P. Gu, X. Cai, C. Xue. Robust and high-efficient fabrication of gold triangles array on optical fiber tip for laser mode locking. Adv. Mater. Interfaces, 9, 2200703(2022).

    [25] W. Jia, C. Gao, Y. Zhao. Intracavity spatiotemporal metasurfaces. Adv. Photonics, 5, 026002(2023).

    [26] M. Z. E. Rafique, A. Basiri, J. Bai. Ultrafast graphene-plasmonic hybrid metasurface saturable absorber with low saturation fluence. ACS Nano, 17, 10431-10441(2023).

    [27] L. Zhang, H. Zhang, N. Tang. ‘Plug-and-play’ plasmonic metafibers for ultrafast fibre lasers. Light Adv. Manuf., 3, 45(2022).

    [28] Z. Chen, L. Gui, C. Wang. Double-rod gold metasurface for Q-switched polarization-maintaining fiber laser. Proc. SPIE, 12614, 126141C(2022).

    [29] V. V. Zubyuk, P. P. Vabishchevich, M. R. Shcherbakov. Low-power absorption saturation in semiconductor metasurfaces. ACS Photonics, 6, 2797-2806(2019).

    [30] Z. Chen, L. Gui, C. Wang. Gold metasurfaces as saturable absorbers for all-normal-dispersion ytterbium-doped mode-locked fiber laser. IEEE Photonics J., 14, 1530406(2022).

    [31] M. W. Knight, N. S. King, L. Liu. Aluminum for plasmonics. ACS Nano, 8, 834-840(2014).

    [32] C. W. Teplin, C. T. Rogers. Experimental example of isotropic surface second-harmonic generation: dc-sputtered air-exposed aluminum thin films. Phys. Rev. B, 65, 245408(2002).

    [33] P. N. Melentiev, T. V. Konstantinova, A. E. Afanasiev. Single nano-hole as a new effective nonlinear element for third-harmonic generation. Laser Phys. Lett., 10, 075901(2013).

    [34] K. Y. Yang, J. Butet, C. Yan. Enhancement mechanisms of the second harmonic generation from double resonant aluminum nanostructures. ACS Photonics, 4, 1522-1530(2017).

    [35] S. Boroviks, A. Kiselev, K. Achouri. Demonstration of a plasmonic nonlinear pseudodiode. Nano Lett., 23, 3362-3368(2023).

    [36] J. Butet, P.-F. Brevet, O. J. Martin. Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications. ACS Nano, 9, 10545-10562(2015).

    [37] M. Ethis de Corny, N. Chauvet, G. Laurent. Wave-mixing origin and optimization in single and compact aluminum nanoantennas. ACS Photonics, 3, 1840-1846(2016).

    [38] M. Castro-Lopez, D. Brinks, R. Sapienza. Aluminum for nonlinear plasmonics: resonance-driven polarized luminescence of Al, Ag, and Au nanoantennas. Nano Lett., 11, 4674-4678(2011).

    [39] M.-N. Su, C. J. Ciccarino, S. Kumar. Ultrafast electron dynamics in single aluminum nanostructures. Nano Lett., 19, 3091-3097(2019).

    [40] M. Miscuglio, A. Mehrabian, Z. Hu. All-optical nonlinear activation function for photonic neural networks [Invited]. Opt. Mater. Express, 8, 3851-3863(2018).

    [41] H. Wang, Z. Hu, J. Deng. All-optical ultrafast polarization switching with nonlinear plasmonic metasurfaces. Sci. Adv., 10, eadk3882(2024).

    [42] I. Avrutsky, R. Gibson, J. Sears. Linear systems approach to describing and classifying Fano resonances. Phys. Rev. B, 87, 125118(2013).

    [43] B. Fu, Y. Hua, X. Xiao. Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2 μm. IEEE J. Sel. Top. Quantum Electron., 20, 411-415(2014).

    [44] J. Sotor, M. Pawliszewska, G. Sobon. All-fiber Ho-doped mode-locked oscillator based on a graphene saturable absorber. Opt. Lett., 41, 2592-2595(2016).

    [45] L. Li, L. Zhou, T. Li. Passive mode-locking operation of a diode-pumped Tm:YAG laser with a MoS2 saturable absorber. Opt. Laser Technol., 124, 105986(2020).

    [46] D. Popa, Z. Sun, T. Hasan. Graphene Q-switched, tunable fiber laser. Appl. Phys. Lett., 98, 073106(2011).

    [47] Z. Luo, Y. Huang, M. Zhong. 1-, 1.5-, and 2-μm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber. J. Lightwave Technol., 32, 4679-4686(2014).

    [48] B. Chen, X. Zhang, K. Wu. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Opt. Express, 23, 26723-26737(2015).

    [49] W. J. Cao, H. Y. Wang, A. P. Luo. Graphene-based, 50 nm wide-band tunable passively Q-switched fiber laser. Laser Phys. Lett., 9, 54-58(2012).

    [50] Y. Huang, Z. Luo, Y. Li. Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber. Opt. Express, 22, 25258-25266(2014).

    [51] L. Gui, C. Wang, F. Ding. 60 nm span wavelength-tunable vortex fiber laser with intracavity plasmon metasurfaces. ACS Photonics, 10, 623-631(2023).

    [52] C. Wang, L. Gui, X. Mei. Intracavity spatially modulated metasurfaces for a wavelength-tunable figure-9 vortex fiber laser. Opt. Express, 32, 6423-6431(2024).

    [53] C. Zhong, K. Liao, T. Dai. Graphene/silicon heterojunction for reconfigurable phase-relevant activation function in coherent optical neural networks. Nat. Commun., 14, 6939(2023).

    Hailun Xie, Lili Gui, Xiangxiang Zhou, Yue Zhou, Kun Xu, "Less is more: surface-lattice-resonance-enhanced aluminum metasurface with giant saturable absorption for a wavelength-tunable Q-switched Yb-doped fiber laser," Photonics Res. 12, 2198 (2024)
    Download Citation