• Chinese Journal of Lasers
  • Vol. 48, Issue 12, 1203001 (2021)
Hongwei Chu1、*, Shengzhi Zhao1, Kejian Yang2, and Dechun Li1、**
Author Affiliations
  • 1School of Information Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
  • 2Institute of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
  • show less
    DOI: 10.3788/CJL202148.1203001 Cite this Article Set citation alerts
    Hongwei Chu, Shengzhi Zhao, Kejian Yang, Dechun Li. Advancement in Preparation and Nonlinear Optical Properties of Zeolitic Imidazolate Frameworks[J]. Chinese Journal of Lasers, 2021, 48(12): 1203001 Copy Citation Text show less
    References

    [1] Franken P A, Hill A E, Peters C W et al. Generation of optical harmonics[J]. Physical Review Letters, 7, 118-121(1961).

    [2] Armstrong J A, Bloembergen N, Ducuing J et al. Interactions between light waves in a nonlinear dielectric[J]. Physical Review, 127, 1918-1939(1962).

    [3] Sun Y L, Wang X, Liu J et al. Research progress in nonlinear optical materials[J]. Science & Technology in Chemical Industry, 19, 51-54(2011).

    [4] Ma Z J, Wei R F, Hu Z L et al. 2D materials and quasi-2D materials: nonlinear optical properties and corresponding applications[J]. Chinese Journal of Lasers, 44, 0703002(2017).

    [5] Shi J C, Chu H W, Li Y et al. Synthesis and nonlinear optical properties of semiconducting single-walled carbon nanotubes at 1 μm[J]. Nanoscale, 11, 7287-7292(2019).

    [6] Pan H, Cao L H, Chu H W et al. Broadband nonlinear optical response of InSe nanosheets for the pulse generation from 1 to 2 μm[J]. ACS Applied Materials & Interfaces, 11, 48281-48289(2019). http://www.ncbi.nlm.nih.gov/pubmed/31834767

    [7] Chu H W, Li Y, Wang C et al. Recent investigations on nonlinear absorption properties of carbon nanotubes[J]. Nanophotonics, 9, 761-781(2020). http://www.degruyter.com/view/journals/nanoph/ahead-of-print/article-10.1515-nanoph-2020-0085/article-10.1515-nanoph-2020-0085.xml?rskey=PS6qyw&result=15&intcmp=trendmd

    [8] Sheng Y, Zhang W G. Review of organometal nonlinear optical materials[J]. Journal of Functional Materials, 26, 1-14(1995).

    [9] Qin J G, Yang C L, Liu D Y. Recent research progress of organometal nonlinear optical materials[J]. Chemistry, 59, 13-17(1996).

    [10] Wang J H, Yu C X, Shen Y Q. Progress in organic third-order nonlinear optical materials[J]. Journal of Functional Materials, 29, 566-573(1998).

    [11] Li Z Y, Li B C, Zhou J B et al. Progress in organic third-order nonlinear optical materials[J]. Journal of Jilin Institute of Chemical Technology, 25, 23-31(2008).

    [12] Jiao F, Liu X, Zhang X G. Research and developments of third-order nonlinear optical polymers[J]. Electro-Optic Technology Application, 24, 23-27(2009).

    [13] Zhang Q, Yang F, Zhu J. Introduction of the research progress on organic second-order nonlinear optic switches[J]. Guangzhou Chemical Industry, 48, 13-15(2020).

    [14] Kealy T J, Pauson P L. A new type of organo-iron compound[J]. Nature, 168, 1039-1040(1951). http://www.nature.com/articles/1681039b0

    [15] Miller S A, Tebboth J A, Tremaine J F. 114. dicyclopentadienyliron[J]. Journal of the Chemical Society (Resumed), 632-635(1952).

    [16] Wilkinson G, Rosenblum M, Whiting M C et al. The structure of iron bis-cyclopentadienyl[J]. Journal of the American Chemical Society, 74, 2125-2126(1952). http://pubs.acs.org/doi/abs/10.1021/ja01128a527

    [17] Fischer E O, Pfab W. Cyclopentadien-metallkomplexe, ein neuer typ metallorganischer verbindungen[J]. Zeitschrift Für Naturforschung B, 7, 377-379(1952).

    [18] Woodward R B, Rosenblum M, Whiting M C. A new aromatic system[J]. Journal of the American Chemical Society, 74, 3458-3459(1952).

    [19] Geoffroy G L, Wrighton M S. Preface[M]. //Organometallic photochemistry, ix(1979).

    [20] Geoffroy G L. Organometallic photochemistry[J]. Journal of Chemical Education, 60, 861-866(1983).

    [21] Lebeau B, Innocenzi P. Hybrid materials for optics and photonics[J]. Chemical Society Reviews, 40, 886-906(2011).

    [22] Medishetty R, Zaręba J K, Mayer D et al. Nonlinear optical properties, upconversion and lasing in metal-organic frameworks[J]. Chemical Society Reviews, 46, 4976-5004(2017). http://europepmc.org/abstract/MED/28621347

    [23] Jarvis J A J, Wells A F. The structural chemistry of cupric compounds[J]. Acta Crystallographica, 13, 1027-1028(1960).

    [24] Park K S, Ni Z, Côté A P et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences of the United States of America, 103, 10186-10191(2006). http://europepmc.org/articles/PMC1502432

    [25] Tian Y Q, Cai C X, Ren X M et al. The silica-like extended polymorphism of cobalt(II) imidazolate three-dimensional frameworks: X-ray single-crystal structures and magnetic properties[J]. Chemistry-A European Journal, 9, 5673-5685(2003). http://onlinelibrary.wiley.com/doi/10.1002/chem.200304957

    [26] Tian Y Q, Zhao Y M, Chen Z X et al. Design and generation of extended zeolitic metal-organic frameworks (ZMOFs): synthesis and crystal structures of zinc(II) imidazolate polymers with zeolitic topologies[J]. Chemistry-A European Journal, 13, 4146-4154(2007).

    [27] Tian Y Q, Chen Z X, Weng L H et al. Two polymorphs of cobalt(II) imidazolate polymers synthesized solvothermally by using one organic template N, N-dimethylacetamide[J]. Inorganic Chemistry, 43, 4631-4635(2004).

    [28] Huang X C, Zhang J P, Lin Y Y et al. Two mixed-valence copper (I, II) imidazolate coordination polymers: metal-valence tuning approach for new topological structures[J]. Chemical Communications, 1100-1101(2004).

    [29] Huang X C, Zhang J P, Chen X M. A new route to supramolecular isomers via molecular templating: nanosized molecular polygons of copper(I) 2-methylimidazolates[J]. Journal of the American Chemical Society, 126, 13218-13219(2004).

    [30] Huang X C, Zhang J P, Chen X M. [Zn(bim)2]·(H2O)1.67: open metal-organic frameworks with the sodalite topological structures[J]. Chinese Science Bulletin, 48, 1491-1494(2003).

    [31] Zhang J P, Huang X C, Chen X M. Supramolecular isomerism in coordination polymers[J]. Chemical Society Reviews, 38, 2385-2396(2009).

    [32] Banerjee R, Phan A, Wang B et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture[J]. Science, 319, 939-943(2008). http://pubs.acs.org/servlet/linkout?suffix=ref13/cit13a&dbid=8&doi=10.1021%2Fjacs.5b06929&key=18276887

    [33] Wang B, Côté A P, Furukawa H et al. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs[J]. Nature, 453, 207-211(2008).

    [34] Liu M, Lu X M, Feng J H et al. Research advances in zeolitic imidazolate frameworks(ZIFs) in America[J]. Modern Chemical Industry, 28, 81-84, 86(2008).

    [35] Diao H M, Ren S Z. Progress in synthesis and property of zeolitic imidazolate frameworks[J]. Chemical Industry and Engineering Progress, 29, 1658-1665(2010).

    [36] Mao X Y, Wang Y X, Wang H Y et al. Progress in preparation and properties of zeolite imidazole ester skeleton(ZIFs)[J]. Contemporary Chemical Industry, 47, 1698-1701(2018).

    [37] Moggach S A, Bennett T D, Cheetham A K. The effect of pressure on ZIF-8: increasing pore size with pressure and the formation of a high-pressure phase at 1.47 GPa[J]. Angewandte Chemie (International Ed. in English), 48, 7087-7089(2009). http://onlinelibrary.wiley.com/doi/abs/10.1002/anie.200902643

    [38] Wu H, Zhou W, Yildirim T. Methane sorption in nanoporous metal-organic frameworks and first-order phase transition of confined methane[J]. The Journal of Physical Chemistry C, 113, 3029-3035(2009). http://pubs.acs.org/doi/10.1021/jp8103276

    [39] Küsgens P, Rose M, Senkovska I et al. Characterization of metal-organic frameworks by water adsorption[J]. Microporous and Mesoporous Materials, 120, 325-330(2009). http://www.sciencedirect.com/science/article/pii/S1387181108006100

    [40] Xiang S C, Zhou W, Gallegos J M et al. Exceptionally high acetylene uptake in a microporous metal-organic framework with open metal sites[J]. Journal of the American Chemical Society, 131, 12415-12419(2009). http://www.ncbi.nlm.nih.gov/pubmed/19705919

    [41] Jiang J L, Liao J S. Research development on the synthesis of zeolitic imidazolate framework-8 and membranes[J]. Materials Review, 29, 52-58(2015).

    [42] Guo X, Ru X Y, Wang X P et al. Study on synthesis of zeolite-imidazolate frameworks[J]. New Chemical Materials, 43, 179-183(2015).

    [43] Gu B. Adsorption of Congo red from aquatic solution using zeolitic imidazolate framework-8 and its characteristics[D](2015).

    [44] Yang L L. Preparation of novel zeolitic imidazolate framework materials and evaluation of their catalytic activities[D](2015).

    [45] Lee Y R, Jang M S, Cho H Y et al. ZIF-8: a comparison of synthesis methods[J]. Chemical Engineering Journal, 271, 276-280(2015). http://www.sciencedirect.com/science/article/pii/S1385894715003034

    [46] Wang Y S, Xu Y P, Li D W et al. Ionothermal synthesis of zeolitic imidazolate frameworks and the synthesis dissolution-crystallization mechanism[J]. Chinese Journal of Catalysis, 36, 855-865(2015).

    [47] Shi Q. Synthesis and properties of zeolitic imidazolate frameworks[D](2012).

    [48] Shi Q, Chen Z, Song Z et al. Synthesis of ZIF-8 and ZIF-67 by steam-assisted conversion and an investigation of their tribological behaviors[J]. Angewandte Chemie (International Ed. in English), 50, 672-675(2011). http://onlinelibrary.wiley.com/doi/10.1002/ange.201004937

    [49] Qian J F, Sun F A, Qin L Z. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals[J]. Materials Letters, 82, 220-223(2012).

    [50] Zhang H, Zhong J, Zhou G X et al. Microwave-assisted solvent-free synthesis of zeolitic imidazolate framework-67[J]. Journal of Nanomaterials, 2016, 1-9(2016). http://dl.acm.org/doi/10.1155/2016/9648386

    [51] Wang P Y, Li Y N, Li S D et al. Research on ultrasonic assisted rapid synthesis of zeolitic imidazolate framework-67(ZIF-67) and its supercapacitor performance[J]. Journal of Light Industry, 32, 24-31(2017).

    [52] Shang M L, Qiu M D, Bian X. Synthesis and microstructure regulation of metal-organic framework ZIF-67 material[J]. Journal of Synthetic Crystals, 48, 2228-2234(2019).

    [53] Yang Q X, Chen C T, Zhao C Z et al. Removal of heavy metal ion from water by zeolite imidazolate skeleton (ZIF-67)[J]. Journal of Functional Materials, 51, 2072-2077(2020).

    [54] Medishetty R, Nalla V, Nemec L et al. A new class of lasing materials: intrinsic stimulated emission from nonlinear optically active metal-organic frameworks[J]. Advanced Materials, 29, 1605637(2017). http://europepmc.org/abstract/MED/28218491

    [55] Medishetty R, Nemec L, Nalla V et al. Multi-photon absorption in metal-organic frameworks[J]. Angewandte Chemie (International Ed. in English), 56, 14743-14748(2017). http://onlinelibrary.wiley.com/doi/10.1002/anie.201706492/abstract

    [56] Yu J C, Cui Y J, Wu C D et al. Two-photon responsive metal-organic framework[J]. Journal of the American Chemical Society, 137, 4026-4029(2015). http://europepmc.org/abstract/med/25789671

    [57] Quah H S, Chen W, Schreyer M K et al. Multiphoton harvesting metal-organic frameworks[J]. Nature Communications, 6, 7954(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC4918338/

    [58] Shin S M, Lee M S, Han J H et al. Assessing the guest-accessible volume in MOFs using two-photon fluorescence microscopy[J]. Chemical Communications (Cambridge, England), 50, 289-291(2014).

    [59] Rocha J, Carlos L D, Paz F A A et al. Luminescent multifunctional lanthanides-based metal-organic frameworks[J]. Chemical Society Reviews, 40, 926-940(2011).

    [60] Evans O R, Lin W B. Crystal engineering of NLO materials based on metal-organic coordination networks[J]. Accounts of Chemical Research, 35, 511-522(2002). http://www.ncbi.nlm.nih.gov/pubmed/12118990

    [61] Cui Y J, Yue Y F, Qian G D et al. Luminescent functional metal-organic frameworks[J]. Chemical Reviews, 112, 1126-1162(2012). http://www.ncbi.nlm.nih.gov/pubmed/21688849

    [62] Stavila V, Talin A A, Allendorf M D. MOF-based electronic and opto-electronic devices[J]. Chemical Society Reviews, 43, 5994-6010(2014). http://europepmc.org/abstract/med/24802763

    [63] Lustig W P, Mukherjee S, Rudd N D et al. Metal-organic frameworks: functional luminescent and photonic materials for sensing applications[J]. Chemical Society Reviews, 46, 3242-3285(2017). http://smartsearch.nstl.gov.cn/paper_detail.html?id=f21d025ff657484c6021d93d1fa8f9cd

    [64] Jiang X T, Zhang L J, Liu S X et al. Ultrathin metal-organic framework: an emerging broadband nonlinear optical material for ultrafast photonics[J]. Advanced Optical Materials, 6, 1800561(2018). http://onlinelibrary.wiley.com/doi/10.1002/adom.201800561

    [65] van Cleuvenbergen S, Stassen I, Gobechiya E et al. ZIF-8 as nonlinear optical material: influence of structure and synthesis[J]. Chemistry of Materials, 28, 3203-3209(2016). http://pubs.acs.org/doi/10.1021/acs.chemmater.6b01087

    [66] Zaręba J K, Nyk M, Samoć M. Co/ZIF-8 heterometallic nanoparticles: control of nanocrystal size and properties by a mixed-metal approach[J]. Crystal Growth & Design, 16, 6419-6425(2016). http://pubs.acs.org/doi/abs/10.1021/acs.cgd.6b01090

    [67] Pan H, Wang X, Chu H W et al. Optical modulation characteristics of zeolitic imidazolate framework-67 (ZIF-67) in the near infrared regime[J]. Optics Letters, 44, 5892-5895(2019).

    [68] Pan H, Chu H W, Wang X et al. Optical nonlinearity of zeolitic imidazolate framework-67 in the near-infrared region[J]. Materials Chemistry Frontiers, 4, 2081-2088(2020). http://pubs.rsc.org/en/content/articlelanding/2020/qm/d0qm00226g

    [69] Pan H, Chu H W, Wang X et al. Nonlinear optical features of zeolitic imidazolate framework-67 nanocrystals for mid-infrared pulse generation[J]. Crystal Growth & Design, 20, 6683-6690(2020).

    [70] Zhang K L, Chen H W, Lu B L et al. Passively Q-switched erbium-doped fiber laser based on HfSe2 saturable absorber[J]. Acta Optica Sinica, 40, 1314001(2020).

    [71] Jiang G C, Pan R, Chen C H et al. Ultrafast laser fabricated drag reduction micro-nano structures and their corrosion resistance[J]. Chinese Journal of Lasers, 47, 0802005(2020).

    [72] Lü H L, Mao Y D, Yu M Z et al. Research progress on heat transfer theory in ultra-fast laser heating technology[J]. Laser & Optoelectronics Progress, 57, 010005(2020).

    [73] Aboraia A M, Darwish A A A, Polyakov V et al. Structural characterization and optical properties of zeolitic imidazolate frameworks (ZIF-8) for solid-state electronics applications[J]. Optical Materials, 100, 109648(2020).

    [74] Mendiratta S, Lee C H, Usman M et al. Metal-organic frameworks for electronics: emerging second order nonlinear optical and dielectric materials[J]. Science and Technology of Advanced Materials, 16, 054204(2015). http://europepmc.org/articles/PMC5070019/

    [75] Mezenov Y A, Kulachenkov N K, Yankin A N et al. Polymer matrix incorporated with ZIF-8 for application in nonlinear optics[J]. Nanomaterials, 10, 1036(2020).

    [76] Ali M A, Liu X F, Li Y et al. Nonlinear-optical response in zeolitic imidazolate framework glass[J]. Inorganic Chemistry, 59, 8380-8386(2020). http://pubs.acs.org/doi/10.1021/acs.inorgchem.0c00806

    Hongwei Chu, Shengzhi Zhao, Kejian Yang, Dechun Li. Advancement in Preparation and Nonlinear Optical Properties of Zeolitic Imidazolate Frameworks[J]. Chinese Journal of Lasers, 2021, 48(12): 1203001
    Download Citation