• Photonics Research
  • Vol. 13, Issue 5, 1341 (2025)
Yang Liu1,†,*, Jing Zhang1,†, Laurens Bogaert1..., Emadreza Soltanian1, Evangelia Delli1, Konstantin Morozov2, Sergey Mikhrin2, Johanna Rimböck3, Guy Lepage4, Peter Verheyen4, Joris Van Campenhout4, Peter Ossieur5, Geert Morthier1 and Gunther Roelkens1|Show fewer author(s)
Author Affiliations
  • 1Photonics Research Group, INTEC, Ghent University - imec, 9052 Ghent, Belgium
  • 2Innolume GmbH, 44263 Dortmund, Germany
  • 3EV Group E.Thallner GmbH, 4782 St. Florian am Inn, Austria
  • 4IMEC, 3001 Heverlee, Belgium
  • 5IDLab, INTEC, Ghent University - imec, 9052 Ghent, Belgium
  • show less
    DOI: 10.1364/PRJ.545946 Cite this Article Set citation alerts
    Yang Liu, Jing Zhang, Laurens Bogaert, Emadreza Soltanian, Evangelia Delli, Konstantin Morozov, Sergey Mikhrin, Johanna Rimböck, Guy Lepage, Peter Verheyen, Joris Van Campenhout, Peter Ossieur, Geert Morthier, Gunther Roelkens, "Micro-transfer printing of O-band InAs/GaAs quantum-dot SOAs on silicon photonic integrated circuits," Photonics Res. 13, 1341 (2025) Copy Citation Text show less
    References

    [1] S. Shekhar, W. Bogaerts, L. Chrostowski. Roadmapping the next generation of silicon photonics. Nat. Commun., 15, 751(2024).

    [2] D. Liang, G. Roelkens, R. Baets. Hybrid integrated platforms for silicon photonics. Materials, 3, 1782-1802(2010).

    [3] D. Thomson, A. Zilkie, J. E. Bowers. Roadmap on silicon photonics. J. Opt., 18, 073003(2016).

    [4] S. Y. Siew, B. Li, F. Gao. Review of silicon photonics technology and platform development. J. Lightwave Technol., 39, 4374-4389(2021).

    [5] A. Novack, M. Streshinsky, R. Ding. Progress in silicon platforms for integrated optics. Nanophotonics, 3, 205-214(2014).

    [6] F. Ferraro, P. De Heyn, M. Kim. IMEC silicon photonics platforms: performance overview and roadmap. Proc. SPIE, 12429, 1242909(2023).

    [7] M. de Cea, D. Van Orden, J. Fini. High-speed, zero-biased silicon-germanium photodetector. APL Photonics, 6, 041302(2021).

    [8] G. Chen, Y. Yu, Y. Shi. High-speed photodetectors on silicon photonics platform for optical interconnect. Laser Photonics Rev., 16, 220C0117(2022).

    [9] J. Michel, J. Liu, L. C. Kimerling. High-performance Ge-on-Si photodetectors. Nat. Photonics, 4, 527-534(2010).

    [10] C. Galland, A. Novack, Y. Liu. A CMOS-compatible silicon photonic platform for high-speed integrated opto-electronics. Proc. SPIE, 8767, 87670G(2013).

    [11] A. Rahim, E. Ryckeboer, A. Z. Subramanian. Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits. J. Lightwave Technol., 35, 639-649(2017).

    [12] S. Cheung, D. Liang, Y. Yuan. Ultra-power-efficient, electrically programmable, multi-state photonic flash memory on a heterogeneous III-V/Si platform. Laser Photonics Rev., 18, 2400001(2024).

    [13] W. Bogaerts, L. Chrostowski. Silicon photonics circuit design: methods, tools and challenges. Laser Photonics Rev., 12, 1700237(2018).

    [14] K. A. Buzaverov, A. S. Baburin, E. V. Sergeev. Silicon nitride integrated photonics from visible to mid-infrared spectra. Laser Photonics Rev., 18, 2400508(2024).

    [15] D. Liang, G. Kurczveil, X. Huang. Heterogeneous silicon light sources for datacom applications. Opt. Fiber Technol., 44, 43-52(2018).

    [16] D. Liang, J. E. Bowers. Recent progress in lasers on silicon. Nat. Photonics, 4, 511-517(2010).

    [17] W. L. Ng, M. Lourenco, R. Gwilliam. An efficient room-temperature silicon-based light-emitting diode. Nature, 410, 192-194(2001).

    [18] J. A. Bebawi, I. Kandas, M. A. El-Osairy. A comprehensive study on EDFA characteristics: temperature impact. Appl. Sci., 8, 1640(2018).

    [19] Y. Nishida, M. Yamada, T. Kanamori. Development of an efficient praseodymium-doped fiber amplifier. IEEE J. Quantum Electron., 34, 1332-1339(1998).

    [20] C. Wang, X.-L. Zhong, Z.-Y. Li. Linear and passive silicon optical isolator. Sci. Rep., 2, 674(2012).

    [21] P. Pintus, F. Di Pasquale, J. E. Bowers. Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform. Opt. Express, 21, 5041-5052(2013).

    [22] W. Yan, Z. Wei, Y. Yang. Ultra-broadband magneto-optical isolators and circulators on a silicon nitride photonics platform. Optica, 11, 376-384(2024).

    [23] M. P. Rombouts, F. Karinou, P. Pintus. A sub-picojoule per bit integrated magneto-optic modulator on silicon: modeling and experimental demonstration. Laser Photonics Rev., 17, 2200799(2023).

    [24] J. Zhang, M. A. Itzler, H. Zbinden. Advances in InGaAs/InP single-photon detector systems for quantum communication. Light Sci. Appl., 4, e286(2015).

    [25] D. Saxena, S. Mokkapati, P. Parkinson. Optically pumped room-temperature GaAs nanowire lasers. Nat. Photonics, 7, 963-968(2013).

    [26] S.-I. Nagahama, T. Yanamoto, M. Sano. Ultraviolet GaN single quantum well laser diodes. Japan J. Appl. Phys., 40, L785(2001).

    [27] Y. Zheng, C. Sun, B. Xiong. Integrated gallium nitride nonlinear photonics. Laser Photonics Rev., 16, 2100071(2022).

    [28] D. Liang, S. Srinivasan, A. Descos. High-performance quantum-dot distributed feedback laser on silicon for high-speed modulations. Optica, 8, 591-593(2021).

    [29] Y. Qi, Y. Li. Integrated lithium niobate photonics. Nanophotonics, 9, 1287-1320(2020).

    [30] X. Liu, N. Chen, T. Chu. Polarization-insensitive electrooptic modulation on anisotropic thin-film lithium niobate. ACS Photonics, 11, 2556-2560(2024).

    [31] D. Ban, G. Liu, H. Yu. High electro-optic coefficient lead zirconate titanate films toward low-power and compact modulators. Opt. Mater. Express, 11, 1733-1741(2021).

    [32] C. Wang, Z. Li, J. Riemensberger. Lithium tantalate photonic integrated circuits for volume manufacturing. Nature, 629, 784-790(2024).

    [33] Z. Wei, W. Yan, J. Qin. Dysprosium substituted Ce:YIG thin films for temperature insensitive integrated optical isolator applications. Materials, 15, 1691(2022).

    [34] S. Ghosh, S. Keyvavinia, W. Van Roy. Ce:YIG/silicon-on-insulator waveguide optical isolator realized by adhesive bonding. Opt. Express, 20, 1839-1848(2012).

    [35] J. Liang, Y. Li, T. Dai. On-chip Ce:YIG/Si Mach–Zehnder optical isolator with low power consumption. Opt. Express, 31, 8375-8383(2023).

    [36] G. Roelkens, J. Zhang, L. Bogaert. Present and future of micro-transfer printing for heterogeneous photonic integrated circuits. APL Photonics, 9, 010901(2024).

    [37] Y. Liu, L. Wang, Y. Zhang. Demonstration of n-Ga2O3/p-GaN diodes by wet-etching lift-off and transfer-print technique. IEEE Electron. Device Lett., 42, 509-512(2021).

    [38] J. Justice, C. Bower, M. Meitl. Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers. Nat. Photonics, 6, 610-614(2012).

    [39] Y. Liu, Z. Li, F. B. Atar. Integration of high-performance InGaAs/GaN photodetectors by direct bonding via micro-transfer printing. ACS Appl. Mater. Interfaces, 16, 10996-11002(2024).

    [40] S. Uvin, S. Kumari, A. De Groote. 1.3 μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding. Opt Express, 26, 18302-18309(2018).

    [41] S. Dhoore, S. Uvin, D. Van Thourhout. Novel adiabatic tapered couplers for active III–V/SOI devices fabricated through transfer printing. Opt. Express, 24, 12976-12990(2016).

    [42] N. Ye, G. Muliuk, J. Zhang. Transfer print integration of waveguide-coupled germanium photodiodes onto passive silicon photonic ICs. J. Lightwave Technol., 36, 1249-1254(2018).

    [43] T. Vanackere, T. Vandekerckhove, L. Bogaert. Heterogeneous integration of a high-speed lithium niobate modulator on silicon nitride using micro-transfer printing. APL Photonics, 8, 086102(2023).

    [44] J. R. Vaskasi, N. Singh, J. Van Kerrebrouck. High wall-plug efficiency and narrow linewidth III-V-on-silicon C-band DFB laser diodes. Opt. Express, 30, 27983-27992(2022).

    [45] Q. Cai, P. Li, Y. Shi. Tbps parallel random number generation based on a single quarter-wavelength-shifted DFB laser. Opt. Laser Technol., 162, 109273(2023).

    [46] M. A. Tran, D. Huang, J. E. Bowers. Tutorial on narrow linewidth tunable semiconductor lasers using Si/III-V heterogeneous integration. APL Photonics, 4, 111101(2019).

    [47] E. Soltanian, G. Muliuk, S. Uvin. Micro-transfer-printed narrow-linewidth III-V-on-Si double laser structure with a combined 110 nm tuning range. Opt. Express, 30, 39329-39339(2022).

    [48] T. Komljenovic, L. Liang, R.-L. Chao. Widely-tunable ring-resonator semiconductor lasers. Appl. Sci., 7, 732(2017).

    [49] C. Yu, Z. Chen, J. J. Wang. Temperature dependence of the band gap of perovskite semiconductor compound CsSnI3. J. Appl. Phys., 110, 063526(2011).

    [50] J. Camassel, D. Auvergne, H. Mathieu. Temperature dependence of the band gap and comparison with the threshold frequency of pure GaAs lasers. J. Appl. Phys., 46, 2683-2689(1975).

    [51] D. P. Popescu, P. G. Eliseev, A. Stintz. Temperature dependence of the photoluminescence emission from InAs quantum dots in a strained Ga0.85In0.15As quantum well. Semicond. Sci. Technol., 19, 33(2003).

    [52] R. Fehse, S. Tomic, A. R. Adams. A quantitative study of radiative, Auger, and defect related recombination processes in 1.3-μm GaInNAs-based quantum-well lasers. IEEE J. Sel. Topics Quantum Electron., 8, 801-810(2002).

    [53] K. Hild, S. J. Sweeney, I. P. Marko. Temperature and pressure dependence of carrier recombination processes in GaAsSb/GaAs quantum well lasers. Phys. Status Solidi, 244, 197-202(2007).

    [54] E. Kioupakis, Q. Yan, D. Steiauf. Temperature and carrier-density dependence of auger and radiative recombination in nitride optoelectronic devices. New J. Phys., 15, 125006(2013).

    [55] P. Goldberg, P. W. Milonni, B. Sundaram. Theory of the fundamental laser linewidth. Phys. Rev. A, 44, 1969-1985(1991).

    [56] W. Jin, Q.-F. Yang, L. Chang. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics, 15, 346-353(2021).

    [57] W. Pan, L. Zhang, H. Jiang. Ultrafast Raman fiber laser with random distributed feedback. Laser Photonics Rev., 12, 1700326(2018).

    [58] N. Volet, X. Yi, Q.-F. Yang. Micro-resonator soliton generated directly with a diode laser. Laser Photonics Rev., 12, 1700307(2018).

    [59] D. Yin, A. Gubenko, I. Krestnikov. Laser diode comb spectrum amplification preserving low RIN for WDM applications. 2009 Asia Communications and Photonics Conference and Exhibition (ACP), 1-7(2009).

    [60] X. Lu, C. Su, R. Lauer. Increase in laser RIN due to asymmetric nonlinear gain, fiber dispersion, and modulation. IEEE Photonics Technol. Lett., 4, 774-777(1992).

    [61] A. Akrout, A. Shen, R. Brenot. Separate error-free transmission of eight channels at 10 Gb/s using comb generation in a quantum-dash-based mode-locked laser. IEEE Photonics Technol. Lett., 21, 1746-1748(2009).

    [62] L. A. Coldren, S. W. Corzine, M. L. Mashanovitch. Diode Lasers and Photonic Integrated Circuits, 218(2012).

    [63] G. J. Pendock, D. D. Sampson. Transmission performance of high bit rate spectrum-sliced WDM systems. J. Lightwave Technol., 14, 2141-2148(1996).

    [64] B. Pan, J. Bourderionnet, V. Billault. III-V-on-Si3N4 widely tunable narrow-linewidth laser based on micro-transfer printing. Photonics Res., 12, 2508-2520(2024).

    [65] K.-P. Ho, J. D. Walker, J. M. Kahn. External optical feedback effects on intensity noise of vertical-cavity surface-emitting lasers. IEEE Photonics Technol. Lett., 5, 892-895(1993).

    [66] A. Locquet. Routes to chaos of a semiconductor laser subjected to external optical feedback: a review. Photonics, 7, 22(2020).

    [67] G. Morthier. Feedback sensitivity of distributed-feedback laser diodes in terms of longitudinal field integrals. IEEE J. Quantum Electron., 38, 1395-1397(2002).

    [68] D. Lenstra, B. Verbeek, A. Den Boef. Coherence collapse in single-mode semiconductor lasers due to optical feedback. IEEE J. Quantum Electron., 21, 674-679(1985).

    [69] F. Grillot, B. Thedrez, O. Gauthier-Lafaye. Coherence-collapse threshold of 1.3-μm semiconductor DFB lasers. IEEE Photonics Technol. Lett., 15, 9-11(2003).

    [70] S. Azouigui, B. Kelleher, S. Hegarty. Coherence collapse and low-frequency fluctuations in quantum-dash based lasers emitting at 1.57 μm. Opt. Express, 15, 14155-14162(2007).

    [71] K. Kobayashi, M. Seki. Microoptic grating multiplexers and optical isolators for fiber-optic communications. IEEE J. Quantum Electron., 16, 11-22(1980).

    [72] S. Ghosh, S. Keyvaninia, W. Van Roy. Adhesively bonded Ce: YIG/SOI integrated optical circulator. Opt. Lett., 38, 965-967(2013).

    [73] Y. Shoji, T. Mizumoto. Magneto-optical non-reciprocal devices in silicon photonics. Sci. Technol. Adv. Mater., 15, 014602(2014).

    [74] K. Srinivasan, B. J. Stadler. Review of integrated magneto-optical isolators with rare-earth iron garnets for polarization diverse and magnet-free isolation in silicon photonics. Opt. Mater. Express, 12, 697-716(2022).

    [75] L. Bi, J. Hu, P. Jiang. Magneto-optical thin films for on-chip monolithic integration of non-reciprocal photonic devices. Materials, 6, 5094-5117(2013).

    [76] G. Morthier. Numerical study of the single mode stability of quantum well and quantum dot DFB laser diodes under external optical feedback. IEEE Photonics J., 15, 1501204(2023).

    [77] J. Duan, H. Huang, B. Dong. 1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon. IEEE Photonics Technol. Lett., 31, 345-348(2019).

    [78] H. Huang, J. Duan, D. Jung. Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon. J. Opt. Soc. Am. B, 35, 2780-2787(2018).

    [79] L.-C. Lin, C.-Y. Chen, H. Huang. Comparison of optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting solely on ground or excited states. Opt. Lett., 43, 210-213(2018).

    Yang Liu, Jing Zhang, Laurens Bogaert, Emadreza Soltanian, Evangelia Delli, Konstantin Morozov, Sergey Mikhrin, Johanna Rimböck, Guy Lepage, Peter Verheyen, Joris Van Campenhout, Peter Ossieur, Geert Morthier, Gunther Roelkens, "Micro-transfer printing of O-band InAs/GaAs quantum-dot SOAs on silicon photonic integrated circuits," Photonics Res. 13, 1341 (2025)
    Download Citation