• Nano-Micro Letters
  • Vol. 16, Issue 1, 059 (2024)
Jiale Ding1,†, Yao Zhou2,†, Wenhan Xu2,3,*, Fan Yang1..., Danying Zhao1, Yunhe Zhang1,**, Zhenhua Jiang1 and Qing Wang2,***|Show fewer author(s)
Author Affiliations
  • 1College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
  • 2Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
  • 3Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
  • show less
    DOI: 10.1007/s40820-023-01230-2 Cite this Article
    Jiale Ding, Yao Zhou, Wenhan Xu, Fan Yang, Danying Zhao, Yunhe Zhang, Zhenhua Jiang, Qing Wang. Ultraviolet-Irradiated All-Organic Nanocomposites with Polymer Dots for High-Temperature Capacitive Energy Storage[J]. Nano-Micro Letters, 2024, 16(1): 059 Copy Citation Text show less
    References

    [1] Q. Li, L. Chen, M.R. Gadinski, S. Zhang, G. Zhang et al., Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523, 576–579 (2015).

    [2] B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin et al., A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334–336 (2016).

    [3] H. Li, Y. Zhou, Y. Liu, L. Li, Y. Liu et al., Dielectric polymers for high-temperature capacitive energy storage. Chem. Soc. Rev. 50, 6369 (2021).

    [4] Q. Chen, Y. Shen, S. Zhang, Q.M. Zhang, Polymer-based dielectrics with high energy storage density. Annu. Rev. Mater. Res. 45, 433 (2015).

    [5] W.J. Sarjeant, I.W. Clelland, R.A. Price, Capacitive components for power electronics. Proc. IEEE 89, 846 (2001).

    [6] Q. Li, F.Z. Yao, Y. Liu, G. Zhang, H. Wang et al., High-temperature dielectric materials for electrical energy storage. Annu. Rev. Mater. Res. 48, 219 (2018).

    [7] X. Zhang, Y. Shen, Q. Zhang, L. Gu, Y. Hu et al., Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering. Adv. Mater. 27, 819 (2015).

    [8] Z. Zhang, D.H. Wang, M.H. Litt, L.S. Tan, L. Zhu, High-temperature and high-energy-density dipolar glass polymers based on sulfonylated poly(2,6-dimethyl-1,4-phenylene oxide). Angew. Chem. Int. Ed. 57, 1528–1531 (2018).

    [9] H.R. Xu, G.H. He, S. Chen, S.N. Chen, R. Qiao et al., All-organic polymer dielectrics containing sulfonyl dipolar groups and π–π stacking interaction in side-chain architectures. Macromolecules 54, 8195–8206 (2021).

    [10] X.X. Tang, C.L. Din, S.Q. Yu, Y. Liu, H. Luo et al., Synthesis of dielectric polystyrene via one-step nitration reaction for large-scale energy storage. Chem. Eng. J. 446, 137281 (2022).

    [11] G.H. He, Y. Liu, C. Wang, S. Chen, H. Luo et al., All-organic polymer dielectrics prepared via optimization of sequential structure of polystyrene-based copolymers. Chem. Eng. J. 446, 137106 (2022).

    [12] A. Azizi, M.R. Gadinski, Q. Li, M.A. AlSaud, J. Wang et al., High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials. Adv. Mater. 29, 1701864 (2017).

    [13] C. Yuan, Y. Zhou, Y. Zhu, J. Liang, S. Wang et al., Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage. Nat. Commun. 11, 3919 (2020).

    [14] W. Xu, J. Liu, T. Chen, X. Jiang, X. Qian et al., Bioinspired polymer nanocomposites exhibit giant energy density and high efficiency at high temperature. Small 15, 1901582 (2019).

    [15] T. Zhang, X. Chen, Y. Thakur, B. Lu, Q. Zhang et al., A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature. Sci. Adv. 6, eaax6622 (2020).

    [16] S. Luo, J. Yu, T.Q. Ansari, S. Yu, P. Xu et al., Elaborately fabricated polytetrafluoroethylene film exhibiting superior high-temperature energy storage performance. Appl. Mater. Today 21, 100882 (2020).

    [17] Z. Zhang, J. Zheng, K. Premasiri, M.H. Kwok, Q. Li et al., High-κ polymers of intrinsic microporosity: a new class of high temperature and low loss dielectrics for printed electronics. Mater. Horiz. 7, 592 (2020).

    [18] Q. Li, F. Liu, T. Yang, M.R. Gadinski, G. Zhang et al., Sandwich-structured polymer nanocomposites with high energy density and great charge–discharge efficiency at elevated temperatures. Proc. Natl. Acad. Sci. U.S.A. 113, 9995 (2016).

    [19] Y. Wang, J. Cui, Q. Yuan, Y. Niu, Y. Bai et al., Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites. Adv. Mater. 27, 6658 (2015).

    [20] F. Liu, Q. Li, J. Cui, Z. Li, G. Yang et al., High-energy-density dielectric polymer nanocomposites with trilayered architecture. Adv. Funct. Mater. 27, 1606292 (2017).

    [21] H. Li, M.R. Gadinski, Y. Huang, L. Ren, Y. Zhou et al., Crosslinked fluoropolymers exhibiting superior high-temperature energy density and charge-discharge efficiency. Energy Environ. Sci. 13, 1279 (2020).

    [22] Y. Tang, W. Xu, S. Niu, Z. Zhang, Y. Zhang et al., Crosslinked dielectric materials for high-temperature capacitive energy storage. J. Mater. Chem. A 9, 10000 (2021).

    [23] M. Jarvid, A. Johansson, R. Kroon, J.M. Bjuggren, H. Wutzel et al., A new application area for fullerenes: voltage stabilizers for power cable insulation. Adv. Mater. 27, 897 (2015).

    [24] Y. Zhu, Y. Zhu, X. Huang, J. Chen, Q. Li et al., High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets. Adv. Energy Mater. 9, 1901826 (2019).

    [25] H. Li, D. Ai, L. Ren, B. Yao, Z. Han et al., Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers. Adv. Mater. 31, 1900875 (2019).

    [26] Y. Thakur, T. Zhang, C. Iacob, T. Yang, J. Bernholc et al., Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers. Nanoscale 9, 10992 (2017).

    [27] Y. Zhou, Q. Li, B. Dang, Y. Yang, T. Shao et al., A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures. Adv. Mater. 30, 1805672 (2018).

    [28] L. Ren, H. Li, Z. Xie, D. Ai, Y. Zhou et al., High-temperature high-energy-density dielectric polymer nanocomposites utilizing inorganic core–shell nanostructured nanofillers. Adv. Energy Mater. 11, 2101297 (2021).

    [29] Q. Zeng, T. Feng, S. Tao, S. Zhu, B. Yang, Precursor-dependent structural diversity in luminescent carbonized polymer dots (CPDs): the nomenclature. Light Sci. Appl. 10, 142 (2021).

    [30] S. Zhu, Y. Song, J. Shao, X. Zhao, B. Yang, Non-conjugated polymer dots with crosslink-enhanced emission in the absence of fluorophore units. Angew. Chem. Int. Ed. 54, 14626 (2015).

    [31] Q. Burlingame, S. Wu, M. Lin, Q.M. Zhang, Conduction mechanisms and structure–property relationships in high energy density aromatic polythiourea dielectric films. Adv. Energy Mater. 3, 1051 (2013).

    [32] K.C. Kao, Dielectric Phenomena in Solids: with Emphasis on Physical Concepts of Electronic Processes (Academic Press, Amsterdam, Boston, 2004)

    [33] Q.K. Feng, D.F. Liu, Y.X. Zhang, J.Y. Pei, S.L. Zhong et al., Significantly improved high-temperature charge-discharge efficiency of all-organic polyimide composites by suppressing space charges. Nano Energy 99, 107410 (2022).

    [34] J. Dong, R. Hu, X. Xu, J. Chen, Y. Niu et al., A facile in situ surface-functionalization approach to scalable laminated high-temperature polymer dielectrics with ultrahigh capacitive performance. Adv. Funct. Mater. 31, 2102644 (2021).

    [35] S. Cheng, Y. Zhou, Y. Li, C. Yuan, M. Yang et al., Polymer dielectrics sandwiched by medium-dielectric-constant nanoscale deposition layers for high-temperature capacitive energy storage. Energy Storage Mater. 42, 445 (2021).

    [36] A. Deshmukh, C. Wu, O. Yassin, A. Mishra, L. Chen et al., Flexible polyolefin dielectric by strategic design of organic modules for harsh condition electrification. Energy Environ. Sci. 15, 1307 (2022).

    [37] J. Chen, Y. Zhou, X. Huang, C. Yu, D. Han et al., Ladderphane copolymers for high-temperature capacitive energy storage. Nature 615, 62 (2023).

    Jiale Ding, Yao Zhou, Wenhan Xu, Fan Yang, Danying Zhao, Yunhe Zhang, Zhenhua Jiang, Qing Wang. Ultraviolet-Irradiated All-Organic Nanocomposites with Polymer Dots for High-Temperature Capacitive Energy Storage[J]. Nano-Micro Letters, 2024, 16(1): 059
    Download Citation