• Journal of Atmospheric and Environmental Optics
  • Vol. 13, Issue 5, 355 (2018)
Yang ZHANG1、*, Hui WEN1, Xiaoxiao LIN1, and Jiao CHEN2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1673-6141.2018.05.003 Cite this Article
    ZHANG Yang, WEN Hui, LIN Xiaoxiao, CHEN Jiao. Research Progress of Atmospheric Aerosol Nucleation Mechanism Promoted by Organic Acids[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(5): 355 Copy Citation Text show less
    References

    [1] Whitby K T. The physical characteristics of sulfur aerosols[J].Atmospheric Environment(1967), 1978, 12(1): 135-159.

    [2] Hussein T, Maso M D, Petaja T,et al. Evaluation of an automatic algorithm for fitting the particle number size distributions[J]. Boreal Environment Research, 2005, 10(5): 337-355.

    [3] Merikanto J, Spracklen D V, Mann G W,et al. Impact of nucleation on global CCN[J]. Atmospheric Chemistry and Physics, 2009, 9(21): 8601-8616.

    [4] Yu F, Wang Z, Luo G,et al. Ion-mediated nucleation as an important global source of tropospheric aerosols[J]. Atmospheric Chemistry and Physics, 2008, 8(9): 2537-2554.

    [5] Leaitch W R, Bottenheim J W, Biesenthal T A,et al. A case study of gas-to-particle conversion in an eastern canadian forest[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D7): 8095-8111.

    [6] O’Dowd C, McFiggans G, Creasey D,et al. On the photochemical production of new particles in the coastal boundary layer[J]. Geophysical Research Letters, 1999, 2(12): 1707-1710.

    [7] Schillawski R D, Baumgardner D. A study of new particle formation and growth involving biogenic[J].Journal of Geophysical Research, 1998, 103(D13): 16385-16396.

    [8] Holmes N S. A review of particle formation events and growth in the atmosphere in the various environments and discussion of mechanistic implications[J].Atmospheric Environment, 2007, 41(10): 2183-2201.

    [9] Solomon S, Qin D, Manning M,et al. IPCC, Climate Change 2007: The Physical Scientific Basis[M]. New York: Cambridge University Press, 2007.

    [10] Zhang R, Khalizov A, Wang L,et al. Nucleation and growth of nanoparticles in the atmosphere[J]. Chemical Reviews, 2012, 112(3): 1957-2011.

    [11] Weber R J, McMurry P H, Mauldin R L,et al. New particle formation in the remote troposphere: A comparison of observations at various sites[J]. Geophysical Research Letters, 1999, 2(3): 307-310.

    [12] Napari I, Kulmala M, Vehkamki H. Ternary nucleation of inorganic acids, ammonia, and water[J].The Journal of Chemical Physics, 2002, 117(18): 8418-8425.

    [13] Yu F Q, Turco R. Case studies of particle formation events observed in boreal forests: implications for nucleation mechanisms[J].Atmospheric Chemistry and Physics, 2008, 8: 6085-6102.

    [14] Vuollekoski H, Kerminen V-M, Anttila T,et al. Iodine dioxide nucleation simulations in coastal and remote marine environments[J]. Journal of Geophysical Research Atmospheres, 2009, 114(D2): D02206.

    [15] Kulmala M, Kerminen, V M. On the formation and growth of atmospheric nanoparticles[J].Atmospheric Research, 2008, 90(2-4): 132-150.

    [16] Smith J N, Dunn M J, VanReken T M,et al. Chemical composition of atmospheric nanoparticles formed from nucleation in Tecamac, Mexico: Evidence for an important role for organic species in nanoparticle growth[J]. Geophysical Research Letters, 2008, 35(4): L04808.

    [17] Fiedler V, Dal Maso M, Boy M,et al. The contribution of sulphuric acid to atmospheric particle formation and growth: a comparison between boundary layers in Northern and Central Europe[J]. Atmospheric Chemistry and Physics, 2005, 5(7): 1773-1785.

    [18] Boy M, Rannik U, Lehtinen K E J,et al. Nucleation events in the continental boundary layer: Long-term statistical analyses of aerosol relevant characteristics[J]. Journal of Geophysical Research, 2003, 108(D21): 4667.

    [19] Nozière B, Kalberer M, Claeys M,et al. The Molecular identification of organic compouds in the atomsphere: State of the art and challenges[J]. Chemical Reviews, 2015, 115(10): 3919-3983.

    [20] Chebbi A, Carlier P. Carboxylic acids in the troposphere, occurrence, sources, and sinks: A review[J].Atmospheric Environment, 1996, 30(24): 4233-4249.

    [21] Souza S R, Vasconcellos P C, Carvalho L R F. Low molecular weight carboxylic acids in an urban atmosphere: Winter measurements in Sao Paulo City, Brazil[J].Atmospheric Environment, 1999, 33(16): 2563-2574

    [22] Gasparini R, Li R, Collins D R. Integration of size distributions and size-resolved hygroscopicity measured during the Houston Supersite for compositional categorization of the aerosol[J].Atmospheric Environment, 2004, 38(20): 3285-3303.

    [23] Fan J, Zhang R. Atmospheric oxidation mechanism of isoprene[J].Environmental Chemistry, 2004, 1(3): 140-149.

    [24] Zhang R. Getting to the critical nucleus of aerosol formation[J].Science, 2010, 328(5984): 1366-1367.

    [25] Yi T, Li H, Weng T,et al. A novel method for determination of low molecular weight dicarboxylic acids in background atmospheric aerosol using ion chromatography[J]. Analytica Chimica Acta, 2008, 62(1): 78-88.

    [26] Pio C A, Silva P A, Cerqueira M A,et al. Diurnal and seasonal emissions of volatile organic compounds from cork oak (Quercus suber) trees[J]. Atomspheric Enviroment, 2005, 39(10): 1817-1827.

    [27] Forstner H J L, Flagan R C, Seinfeld J H. Secondary organic aerosol from the photooxidation of aromatic hydrocarbons: Molecular composition[J].Environmental Science and Technology, 1997, 31(5): 1345-1358.

    [28] Jang M S, Kamens R M. Characterization of secondary aerosol from the photooxidation of toluene in the presence of NOx and 1-propene[J].Environmental Science and Technology, 2001, 35(18): 3626-3639.

    [29] O’Dowd C D, Aalto P, Hameri K,et al. Aerosol formation: Atmospheric particles from organic vapours[J]. Nature, 2002, 41(6880): 497-498.

    [30] Kavouras I G, Mihalopoulos N, Stephanou E G. Formation of atmospheric particles from organic acids produced by forests[J].Nature, 1998, 395: 683-686.

    [31] Ehn M, Junninen H, Petj T,et al. Composition and temporal behavior of ambient ions in the boreal forest[J]. Atmospheric Chemistry and Physics, 2010, 10(17): 8513-8530.

    [32] Junninen H, Ehn M, Petj T,et al. A high- resolution mass spectrometer to measure atmospheric ion composition[J]. Atmospheric Measurement Techniques, 2010, 3(4): 1039-1053.

    [33] Jordan A, Haidacher S, Hanel G,et al, A high resolution and high sensitivity proton-transfer-reactiontime-of-flight mass spectrometer (PTR-TOF-MS)[J]. International Journal of Mass Spectrometry, 2009, 28(2): 122-128.

    [34] Vanhanen J, Mikkil J, Lehtipalo K,et al. Particle size magnifier for nano-CN detection[J]. Aerosol Science and Technology, 2011, 45(4): 533-542.

    [35] Kulmala M, Riipinen I, Sipila M,et al. Toward direct measurement of atmospheric nucleation[J]. Science, 2007, 318(5847): 89-92.

    [36] Wang S C, Flagan R C. Scanning electrical mobility spectrometer[J].Aerosol Science and Technology, 1990, 13(2): 230-240.

    [37] Yue D L, Hu M, Wu Z J,et al. Characteristics of aerosol size distributions and new particle formation in the summer in Beijing[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D2): 1159-1171.

    [38] Yue D L, Hu M, Zhang R Y,et al. The roles of sulfuric acid in new particle formation and growth in the mega-city of Beijing[J]. Atmospheric Chemistry and Physics, 2010, 10(10): 4953-4960.

    [39] Zhang R Y, Suh I, Zhao J.et al. Atmospheric new particle formation enhanced by organic acids[J]. Science, 2004, 304(5676): 1487-1490.

    [40] Zhang R Y, Wang L, Khalizov A F,et al. Formation of nanoparticles of blue haze enhanced by anthropogenic pollution[J]. Proceedings of the National Academy of Science of the United States of America, 2009, 10(42): 17650-17654.

    [41] Hoffmann T, Bandur R, Marggraf U,et al. Molecular composition of organic aerosols formed in the α-pinene/O3 reaction: Implications for new particle formation processes[J]. Journal of Geophysical Research, 1998, 103(D19): 25569-25578.

    [42] Zhao J, Khalizov A, Zhang R,et al. Hydrogen-bonding interaction in molecular complexes and clusters of aerosol nucleation precursors[J]. The Journal of Physical Chemistry A, 2009, 113(4): 680-689.

    [43] Nadykto A B, Yu F Q, Strong hydrogen bonding between atmospheric nucleation precursors and common organics[J].Chemical Physics Letters, 2007, 435(1): 14-18.

    [44] McGraw R, Wu D T. Kinetic extensions of the nucleation theorem[J].The Journal of Chemical Physics, 2003, 118(20): 9337-9347.

    [45] McGraw R, Zhang R Y. Multivariate analysis of homogeneous nucleation rate measurements. Nucleation in the p-toluic acid/sulfuric acid/water system[J].The Journal of Chemical Physics, 2008, 128(6): 064508.

    [46] Wang L, Khalizov A F, Zheng J,et al. Atmospheric nanoparticles formed from heterogeneous reactions of organics[J]. Nature Geoscience, 2010, 3(4): 238-242.

    [47] Nadykto A B, Yu F. Strong hydrogen bonding between atmospheric nucleation precursors and common organics[J].Chemical Physics Letters, 2007, 435(1): 14-18.

    [48] Nadykto A B, Du H, Yu F. Quantum DFT and DF-DFT study of vibrational spectra of sulfuric acid, sulfuric acid monohydrate, formic acid and its cyclic dimer[J].Vibrational Spectroscopy, 2007, 44(2): 286-296.

    [49] Xu Y, Nadykto A B, Yu F,et al. Formation and properties of hydrogen-bonded complexes of common organic oxalic acid with atmospheric nucleation precursors[J]. Journal of Molecular Structure: THEOCHEM, 2010, 951(1): 28-33.

    [50] Xu Y, Nadykto A B, Yu F,et al. Interaction between common organic acids and trace nucleation species in the Earth’s Atmosphere[J]. The Journal of Physical Chemistry A, 2010, 114(1): 387-396.

    [51] Fan J W, Zhang R Y, Collins D,et al. Contribution of secondary condensable organics to new particle formation: A case study in Houston, Texas[J]. Geophysical Research Letters, 2006, 33(15): L15802.

    [52] Kurtén T, Sundberg M R, Vehkamaki H,et al. Ab initio and density functional theory reinvestigation of gas-phase sulfuric acid monohydrate and ammonium hydrogen sulfate[J]. Journal of Physical Chemistry A, 2006, 110(22): 7178-7188.

    [53] Xu W, Zhang R Y. Theoretical investigation of interaction of dicarboxylic acids with common aerosol nucleation precursors[J].The Journal of Physical Chemistry A, 2012, 11(18): 4539-4550.

    [54] Xu W, Zhang R Y. A theoretical study of hydrated molecular clusters of amines and dicarboxylic acids[J].The Journal of Chemical Physics, 2013, 139(6): 53-58.

    [55] Zhu Y P, Liu Y R, Huang T,et al. Theoretical study of the hydration of atmospheric nucleation precursors with acetic acid[J]. The Journal of Physical Chemistry A, 2014, 118(36): 7959-7974.

    ZHANG Yang, WEN Hui, LIN Xiaoxiao, CHEN Jiao. Research Progress of Atmospheric Aerosol Nucleation Mechanism Promoted by Organic Acids[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(5): 355
    Download Citation