[1] SHEN Y, ZHANG X, LI M, et al. Polymer nanocomposite dielectrics for electrical energy storage[J]. Natl Sci Rev, 2017, 4(1): 23-25.
[2] PAN H, LAN S, XU S Q, et al. Ultrahigh energy storage in superparaelectric relaxor ferroelectrics[J]. Science, 2021, 374(6563): 100-104.
[3] PAN H, LI F, LIU Y, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design[J]. Science, 2019, 365(6453): 578-582.
[4] YAO Z H, SONG Z, HAO H A, et al. Homogeneous/inhomogeneous- structured dielectrics and their energy-storage performances[J]. Adv Mater, 2017, 29(20): 1601727.
[5] WHITTINGHAM M S. Materials challenges facing electrical energy storage[J]. MRS Bull, 2008, 33(4): 411-419.
[6] WANG G, LU Z L, LI Y, et al. Electroceramics for high-energy density capacitors: current status and future perspectives[J]. Chem Rev, 2021, 121(10): 6124-6172.
[7] QI H, XIE A W, TIAN A, et al. Superior energy-storage capacitors with simultaneously giant energy density and efficiency using nanodomain engineered BiFeO3-BaTiO3-NaNbO3 lead-free bulk ferroelectrics[J]. Adv Energy Mater, 2020, 10(6): 1903338.
[8] REN X B. Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching[J]. Nature Mater, 2004, 3(2): 91-94.
[9] COHEN R E. Origin of ferroelectricity in perovskite oxides[J]. Nature, 1992, 358(6382): 136-138.
[10] NEATON J B, EDERER C, WAGHMARE U V, et al. First-principles study of spontaneous polarization in multiferroic BiFeO3[J]. Phys Rev B, 2005, 71: 014113.
[11] LEBEUGLE D, COLSON D, FORGET A, et al. Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields[J]. Appl Phys Lett, 2007, 91(2): 022907.
[12] LI D, ZHOU D, WANG D, et al. Lead-free relaxor ferroelectric ceramics with ultrahigh energy storage densities via polymorphic polar nanoregions design[J]. Small, 2023, 19(8): 2206958.
[13] ZHU X P, GAO Y F, SHI P, et al. Ultrahigh energy storage density in (Bi0.5Na0.5)0.65Sr0.35TiO3-based lead-free relaxor ceramics with excellent temperature stability[J]. Nano Energy, 2022, 98: 107276.
[14] YAN F, SHI Y J, ZHOU X F, et al. Optimization of polarization and electric field of bismuth ferrite-based ceramics for capacitor applications[J]. Chem Eng J, 2021, 417: 127945.
[15] CUI T, ZHANG J, GUO J A, et al. Simultaneous achievement of ultrahigh energy storage density and high efficiency in BiFeO3-based relaxor ferroelectric ceramics via a highly disordered multicomponent design[J]. J Mater Chem A, 2022, 10(27): 14316-14325.
[16] MA C, TAN X, DUL'KIN E, et al. Domain structure-dielectric property relationship in lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics[J]. J Appl Phys, 2010, 108(10): 104105.
[17] YE H R, YANG F, PAN Z B, et al. Significantly improvement of comprehensive energy storage performances with lead-free relaxor ferroelectric ceramics for high-temperature capacitors applications[J]. Acta Mater, 2021, 203: 116484.
[18] YAN F, HUANG K W, JIANG T, et al. Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering[J]. Energy Storage Mater, 2020, 30: 392-400.
[19] JIANG Z H, YUAN Y, YANG H C, et al. Excellent thermal stability and energy storage properties of lead-free Bi0.5Na0.5TiO3-based ceramic[J]. J Am Ceram Soc, 2022, 105(6): 4027-4038.
[20] LUO C Y, WEI Y Z, FENG Q, et al. Significantly enhanced energy-storage properties of Bi0.47Na0.47Ba0.06TiO3-CaHfO3 ceramics by introducing Sr0.7Bi0.2TiO3 for pulse capacitor application[J]. Chem Eng J, 2022, 429: 132165.
[21] HU D, PAN Z B, ZHANG X A, et al. Greatly enhanced discharge energy density and efficiency of novel relaxation ferroelectric BNT-BKT-based ceramics[J]. J Mater Chem C, 2020, 8(2): 591-601.
[22] WANG T, HU J C, YANG H B, et al. Dielectric relaxation and Maxwell-Wagner interface polarization in Nb2O5 doped 0.65BiFeO3- 0.35BaTiO3 ceramics[J]. J Appl Phys, 2017, 121(8):084103.
[23] YAN F, BAI H R, SHI Y J, et al. Sandwich structured lead-free ceramics based on Bi0.5Na0.5TiO3 for high energy storage[J]. Chem Eng J, 2021, 425: 130669.
[24] YAN F, ZHOU X F, HE X A, et al. Superior energy storage properties and excellent stability achieved in environment-friendly ferroelectrics via composition design strategy[J]. Nano Energy, 2020, 75: 105012.
[25] ZHU X P, SHI P, GAO Y F, et al. Enhanced energy storage performance of 0.88(0.65Bi0.5Na0.5TiO3-0.35SrTiO3)-0.12Bi(Mg0.5 Hf0.5)O3 lead-free relaxor ceramic by composition design strategy[J]. Chem Eng J, 2022, 437: 135462.
[26] LI D, ZHOU D, WANG D, et al. Improved energy storage properties achieved in (K, Na)NbO3based relaxor ferroelectric ceramics via a combinatorial optimization strategy[J]. Adv Funct Materials, 2022, 32(15): 2111776.
[27] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Cryst Sect A, 1976, 32(5): 751-767.
[28] HIRATA T, ISHIOKA K, KITAJIMA M. Vibrational spectroscopy and X-Ray diffraction of perovskite compounds Sr1-xMxTiO3(M= Ca, Mg; 0≤x≤1)[J]. J Solid State Chem, 1996, 124(2): 353-359.
[29] WAESELMANN N, MIHAILOVA B, MAIER B J, et al. Local structural phenomena in pure and Ru-doped 0.9PbZn1/3Nb2/3O3- 0.1PbTiO3 near the morphotropic phase boundary as revealed by Raman spectroscopy[J]. Phys Rev B, 2011, 83(21): 214104.
[30] LI G H, GE G L, LIN J F, et al. Eco-friendly cooling materials with synergistic behavior of electromechanical and electrocaloric effects based on constructing B-site defect field[J]. Appl Mater Today, 2022, 26: 101332.
[31] WANG Lu, KONG Wenjie, LUO Hang, et al. J Inorg Mater, 2018, 33(10): 1059-1064.
[32] YANG H B, YAN F, LIN Y, et al. Enhanced energy-storage properties of lanthanum-doped Bi0.5Na0.5TiO3-based lead-free ceramics[J]. Energy Tech, 2018, 6(2): 357-365.
[33] ZHOU M X, LIANG R H, ZHOU Z Y, et al. Superior energy storage properties and excellent stability of novel NaNbO3-based lead-free ceramics with A-site vacancy obtained via a Bi2O3 substitution strategy[J]. J Mater Chem A, 2018, 6(37): 17896-17904.
[34] GUO Y P, LIU Y, WITHERS R L, et al. Large electric field-induced strain and antiferroelectric behavior in [34](1?x)(Na0.5Bi0.5)TiO3-xBaTiO3 ceramics[J]. Chem Mater, 2011, 23(2): 219-228.