• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 9, 3243 (2022)
TONG Xin1, XIONG Zhe1, GAO Xinyu1, HOU Junwei1, LIU Yiying1, LIAO Kaifeng1, WU Weichuang1, WU Weibin1, QI Long1、2, WANG Hailin1, and CAI Weizi1、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: Cite this Article
    TONG Xin, XIONG Zhe, GAO Xinyu, HOU Junwei, LIU Yiying, LIAO Kaifeng, WU Weichuang, WU Weibin, QI Long, WANG Hailin, CAI Weizi. Research Status and Development of Proton Exchange Membrane Fuel Cell[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(9): 3243 Copy Citation Text show less
    References

    [8] ZHANG Y J, MIYAKE J, AKIYAMA R, et al. Sulfonated phenylene/quinquephenylene/perfluoroalkylene terpolymers as proton exchange membranes for fuel cells[J]. ACS Applied Energy Materials, 2018, 1(3): 1008-1015.

    [12] HAIDER R, WEN Y C, MA Z F, et al. High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies[J]. Chemical Society Reviews, 2021, 50(2): 1138-1187.

    [13] WANG C, WANG S B, PENG L F, et al. Recent progress on the key materials and components for proton exchange membrane fuel cells in vehicle applications[J]. Energies, 2016, 9(8): 603.

    [14] WONG C Y, WONG W Y, RAMYA K, et al. Additives in proton exchange membranes for low- and high-temperature fuel cell applications: a review[J]. International Journal of Hydrogen Energy, 2019, 44(12): 6116-6135.

    [15] XU G X, XUE S J, WEI Z L, et al. Stabilizing phosphotungstic acid in Nafion membrane via targeted silica fixation for high-temperature fuel cell application[J]. International Journal of Hydrogen Energy, 2021, 46(5): 4301-4308.

    [17] OH K, KWON O, SON B, et al. Nafion-sulfonated silica composite membrane for proton exchange membrane fuel cells under operating low humidity condition[J]. Journal of Membrane Science, 2019, 583: 103-109.

    [18] MURIITHI B, LOY D A. Proton conductivity of nafion/ex-situ sulfonic acid-modified stber silica nanocomposite membranes as a function of temperature, silica particles size and surface modification[J]. Membranes, 2016, 6(1): E12.

    [19] POROZHNYY M V, SHKIRSKAYA S A, BUTYLSKII D Y, et al. Physicochemical and electrochemical characterization of Nafion-type membranes with embedded silica nanoparticles: effect of functionalization[J]. Electrochimica Acta, 2021, 370: 137689.

    [21] CHEN X L, L H X, LIN Q L, et al. Partially fluorinated poly(arylene ether)s bearing long alkyl sulfonate side chains for stable and highly conductive proton exchange membranes[J]. Journal of Membrane Science, 2018, 549: 12-22.

    [23] ASENSIO J A, SNCHEZ E M, GMEZ-ROMERO P. Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest[J]. Chemical Society Reviews, 2010, 39(8): 3210-3239.

    [24] XING B Z, SAVADOGO O. The effect of acid doping on the conductivity of polybenzimidazole (PBI)[J]. Journal of New Materials for Electrochemical Systems, 1999, 2(2): 95-101

    [26] HOOSHYARI K, REZANIA H, VATANPOUR V, et al. High temperature membranes based on PBI/sulfonated polyimide and doped-perovskite nanoparticles for PEM fuel cells[J]. Journal of Membrane Science, 2020, 612: 118436.

    [27] IMRAN M A, LI T T, WU X M, et al. Sulfonated polybenzimidazole/amine functionalized titanium dioxide (sPBI/AFT) composite electrolyte membranes for high temperature proton exchange membrane fuel cells usage[J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2425-2437.

    [28] LI X B, MA H W, WANG P, et al. Construction of high-performance, high-temperature proton exchange membranes through incorporating SiO2 nanoparticles into novel cross-linked polybenzimidazole networks[J]. ACS Applied Materials & Interfaces, 2019, 11(34): 30735-30746.

    [29] CHEN S X, PAN H Y, CHANG Z H, et al. Synthesis and study of pyridine-containing sulfonated polybenzimidazole multiblock copolymer for proton exchange membrane fuel cells[J]. Ionics, 2019, 25(5): 2255-2265.

    [30] MUTHURAJA P, PRAKASH S, SHANMUGAM V M, et al. Novel perovskite structured calcium titanate-PBI composite membranes for high-temperature PEM fuel cells: synthesis and characterizations[J]. International Journal of Hydrogen Energy, 2018, 43(9): 4763-4772.

    [31] BARATI S, ABDOLLAHI M, MEHDIPOURGHAZI M, et al. High temperature proton exchange porous membranes based on polybenzimidazole/lignosulfonate blends: preparation, morphology and physical and proton conductivity properties[J]. International Journal of Hydrogen Energy, 2019, 44(57): 30440-30453.

    [32] REGEN N, PEHLIVANOLU K, ZDEMIR Y, et al. Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(4): 2636-2647.

    [34] DING L M, SONG X P, WANG L H, et al. Enhancing proton conductivity of polybenzimidazole membranes by introducing sulfonate for vanadium redox flow batteries applications[J]. Journal of Membrane Science, 2019, 578: 126-135.

    [35] PARK J, WANG L, ADVANI S G, et al. Mechanical stability of H3PO4-doped PBI/hydrophilic-pretreated PTFE membranes for high temperature PEMFCs[J]. Electrochimica Acta, 2014, 120: 30-38.

    [36] ZHANG J, CHEN S A, BAI H J, et al. Effects of phosphotungstic acid on performance of phosphoric acid doped polyethersulfone-polyvinylpyrrolidone membranes for high temperature fuel cells[J]. International Journal of Hydrogen Energy, 2021, 46(19): 11104-11114.

    [37] ZHANG J, LIU J, LU S F, et al. Ion-exchange-induced selective etching for the synthesis of amino-functionalized hollow mesoporous silica for elevated-high-temperature fuel cells[J]. ACS Applied Materials & Interfaces, 2017, 9(37): 31922-31930.

    [38] TAO P P, DAI Y, CHEN S S, et al. Hyperbranched polyamidoamine modified high temperature proton exchange membranes based on PTFE reinforced blended polymers[J]. Journal of Membrane Science, 2020, 604: 118004.

    [40] STAMENKOVIC V R, MUN B S, ARENZ M, et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces[J]. Nature Materials, 2007, 6(3): 241-247.

    [41] ZHANG J, YANG H Z, FANG J Y, et al. Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra[J]. Nano Letters, 2010, 10(2): 638-644.

    [42] CAI X, LIN R, SHEN D D, et al. Gram-scale synthesis of well-dispersed shape-controlled Pt-Ni/C as high-performance catalysts for the oxygen reduction reaction[J]. ACS Applied Materials & Interfaces, 2019, 11(33): 29689-29697.

    [44] LEE H, PARK S, KIM H. Preparation of CO-tolerant PtRuNi/C ternary electrocatalyst having a composition gradient shell[J]. Chemical Engineering Journal, 2021, 414: 128792.

    [46] KUTTIYIEL K A, SASAKI K, CHOI Y, et al. Nitride stabilized PtNi core-shell nanocatalyst for high oxygen reduction activity[J]. Nano Letters, 2012, 12(12): 6266-6271.

    [47] SUN Y, HSIEH Y C, CHANG L C, et al. Synthesis of Pd9Ru@Pt nanoparticles for oxygen reduction reaction in acidic electrolytes[J]. Journal of Power Sources, 2015, 277: 116-123.

    [48] KUTTIYIEL K A, CHOI Y, SASAKI K, et al. Tuning electrocatalytic activity of Pt monolayer shell by bimetallic Ir-M (M=Fe, Co, Ni or Cu) cores for the oxygen reduction reaction[J]. Nano Energy, 2016, 29: 261-267.

    [49] YANG S, TAK Y J, KIM J, et al. Support effects in single-atom platinum catalysts for electrochemical oxygen reduction[J]. ACS Catalysis, 2017, 7(2): 1301-1307.

    [50] LIU J, BAK J, ROH J, et al. Reconstructing the coordination environment of platinum single-atom active sites for boosting oxygen reduction reaction[J]. ACS Catalysis, 2021, 11(1): 466-475.

    [51] YANG S B, FENG X L, WANG X C, et al. Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions[J]. Angewandte Chemie International Edition, 2011, 50(23): 5339-5343.

    [52] GONG K P, DU F, XIA Z H, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323(5915): 760-764.

    [53] ALEXANDER A M, HARGREAVES J S J. Alternative catalytic materials: carbides, nitrides, phosphides and amorphous boron alloys[J]. Chemical Society Reviews, 2010, 39(11): 4388-4401.

    [55] DONG Y Y, DENG Y J, ZENG J H, et al. A high-performance composite ORR catalyst based on the synergy between binary transition metal nitride and nitrogen-doped reduced graphene oxide[J]. Journal of Materials Chemistry A, 2017, 5(12): 5829-5837.

    [56] YOON J, KIM S, PARK H, et al. Molecular M-N4 macrocycles in a nitrogen-carbon matrix as a highly durable oxygen reduction reaction (ORR) electrocatalysts in acid media[J]. Materials Letters, 2021, 291: 129561.

    [57] LIANG Z Z, ZHENG H Q, CAO R. Importance of electrocatalyst morphology for the oxygen reduction reaction[J]. ChemElectroChem, 2019, 6(10): 2600-2614.

    [58] GAO Y Y, WANG L, LI G Z, et al. Taming transition metals on N-doped CNTs by a one-pot method for efficient oxygen reduction reaction[J]. International Journal of Hydrogen Energy, 2018, 43(16): 7893-7902.

    [59] DAI L M, XUE Y H, QU L T, et al. Metal-free catalysts for oxygen reduction reaction[J]. Chemical Reviews, 2015, 115(11): 4823-4892.

    [60] LIU Z W, PENG F, WANG H J, et al. Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium[J]. Angewandte Chemie International Edition, 2011, 50(14): 3257-3261.

    [61] YAO Z, NIE H G, YANG Z, et al. Catalyst-free synthesis of iodine-doped graphene via a facile thermal annealing process and its use for electrocatalytic oxygen reduction in an alkaline medium[J]. Chemical Communications (Cambridge, England), 2012, 48(7): 1027-1029.

    [62] DAEMS N, SHENG X, VANKELECOM I F J, et al. Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction[J]. J Mater Chem A, 2014, 2(12): 4085-4110.

    [63] CHEN X A, CHEN X H, XU X, et al. Sulfur-doped porous reduced graphene oxide hollow nanosphere frameworks as metal-free electrocatalysts for oxygen reduction reaction and as supercapacitor electrode materials[J]. Nanoscale, 2014, 6(22): 13740-13747.

    [64] ZHENG Y, JIAO Y, GE L, et al. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis[J]. Angewandte Chemie International Edition, 2013, 52(11): 3110-3116.

    [65] MOOSTE M, KIBENA-PLDSEPP E, MATISEN L, et al. Oxygen reduction on catalysts prepared by pyrolysis of electrospun styrene-acrylonitrile copolymer and multi-walled carbon nanotube composite fibres[J]. Catalysis Letters, 2018, 148(7): 1815-1826.

    [66] YU H J, SHANG L, BIAN T, et al. Nitrogen-doped porous carbon nanosheets templated from g-C3N4 as metal-free electrocatalysts for efficient oxygen reduction reaction[J]. Advanced Materials, 2016, 28(25): 5080-5086.

    [71] HUSSAIN N, VAN STEEN E, TANAKA S, et al. Metal based gas diffusion layers for enhanced fuel cell performance at high current densities[J]. Journal of Power Sources, 2017, 337: 18-24.

    [72] AGUDELO M C B, HAMPE M, REIBER T, et al. Investigation of porous metal-based 3D-printed anode GDLs for tubular high temperature proton exchange membrane fuel cells[J]. Materials (Basel, Switzerland), 2020, 13(9): 2096.

    [73] YANG Y G, ZHOU X Y, LI B, et al. Recent progress of the gas diffusion layer in proton exchange membrane fuel cells: material and structure designs of microporous layer[J]. International Journal of Hydrogen Energy, 2021, 46(5): 4259-4282.

    [74] RESHETENKO T, BEN B L. Impact of a gas diffusion layer’s structural and textural properties on oxygen mass transport resistance in the cathode and performance of proton exchange membrane fuel cells[J]. Electrochimica Acta, 2021, 371: 137752.

    [75] NANADEGANI F S, LAY E N, SUNDEN B. Effects of an MPL on water and thermal management in a PEMFC[J]. International Journal of Energy Research, 2019, 43(1): 274-296.

    [76] LI B, XIE M, JI H, et al. Optimization of cathode microporous layer materials for proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2021, 46(27): 14674-14686.

    [77] CHANG H M, CHANG M H. Effect of gas diffusion layer with double-side microporous layer coating on polymer electrolyte membrane fuel cell performance[J]. Journal of Fuel Cell Science and Technology, 2013, 10(2): 21005.

    [78] LIN G Y, LIU S Y, QU G K, et al. Effect of pore size distribution in the gas diffusion layer adjusted by composite carbon black on fuel cell performance[J]. International Journal of Energy Research, 2021, 45(5): 7689-7702.

    [79] MORGAN J M, DATTA R. Understanding the gas diffusion layer in proton exchange membrane fuel cells. I. How its structural characteristics affect diffusion and performance[J]. Journal of Power Sources, 2014, 251: 269-278.

    [80] ANTONACCI P, CHEVALIER S, LEE J, et al. Balancing mass transport resistance and membrane resistance when tailoring microporous layer thickness for polymer electrolyte membrane fuel cells operating at high current densities[J]. Electrochimica Acta, 2016, 188: 888-897.

    [82] DAI W, WANG H J, YUAN X Z, et al. Measurement of water transport rates across the gas diffusion layer in a proton exchange membrane fuel cell, and the influence of polytetrafluoroethylene content and micro-porous layer[J]. Journal of Power Sources, 2009, 188(1): 122-126.

    [83] KAKAEE A H, MOLAEIMANESH G R, ELYASI GARMAROUDI M H. Impact of PTFE distribution across the GDL on the water droplet removal from a PEM fuel cell electrode containing binder[J]. International Journal of Hydrogen Energy, 2018, 43(32): 15481-15491.

    [84] ZHANG R F, YANG B W, SHAO Z F, et al. Mechanism and model for optimizing polytetrafluoroethylene distribution to improve the electrical and thermal conductivity of treated carbon fiber paper in fuel cells[J]. ACS Applied Materials & Interfaces, 2021, 13(12): 14207-14220.

    [85] CHEN Y, TIAN T, WAN Z H, et al. Influence of PTFE on water transport in gas diffusion layer of polymer electrolyte membrane fuel cell[J]. International Journal of Electrochemical Science, 2018, 13: 3827-3842.

    [86] MAHNAMA S M, KHAYAT M. Three dimensional investigation of the effect of MPL characteristics on water saturation in PEM fuel cells[J]. Journal of Renewable and Sustainable Energy, 2017, 9(1): 014301.

    TONG Xin, XIONG Zhe, GAO Xinyu, HOU Junwei, LIU Yiying, LIAO Kaifeng, WU Weichuang, WU Weibin, QI Long, WANG Hailin, CAI Weizi. Research Status and Development of Proton Exchange Membrane Fuel Cell[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(9): 3243
    Download Citation