• Opto-Electronic Science
  • Vol. 3, Issue 2, 230027 (2024)
Yichao Liu, Xiaomin Ma, Kun Chao, Fei Sun*..., Zihao Chen, Jinyuan Shan, Hanchuan Chen, Gang Zhao and Shaojie Chen|Show fewer author(s)
Author Affiliations
  • Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • show less
    DOI: 10.29026/oes.2024.230027 Cite this Article
    Yichao Liu, Xiaomin Ma, Kun Chao, Fei Sun, Zihao Chen, Jinyuan Shan, Hanchuan Chen, Gang Zhao, Shaojie Chen. Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium[J]. Opto-Electronic Science, 2024, 3(2): 230027 Copy Citation Text show less
    References

    [1] D Loke, JM Skelton, TC Chong, SR Elliott. Design of a nanoscale, CMOS-integrable, thermal-guiding structure for boolean-logic and neuromorphic computation. ACS Appl Mater Interfaces, 8, 34530-34536(2016).

    [2] H Tan, K Zong, PA Du. Temperature uniformity in convective leaf vein-shaped fluid microchannels for phased array antenna cooling. Int J Therm Sci, 150, 106224(2020).

    [3] JR Wang, JC Min, YZ Song. Forced convective cooling of a high-power solid-state laser slab. Appl Therm Eng, 26, 549-558(2006).

    [4] YL Zhang, M Cleary, XW Wang, N Kempf, L Schoensee et al. High-temperature and high-power-density nanostructured thermoelectric generator for automotive waste heat recovery. Energy Convers Manage, 105, 946-950(2015).

    [5] N Jaziri, J Müller, B Müller, A Boughamoura, N Gutzeit et al. Low-temperature co-fired ceramic-based thermoelectric generator with cylindrical grooves for harvesting waste heat from power circuits. Appl Therm Eng, 184, 116367(2021).

    [6] T Park, J Na, B Kim, Y Kim, H Shin et al. Photothermally activated pyroelectric polymer films for harvesting of solar heat with a hybrid energy cell structure. ACS Nano, 9, 11830-11839(2015).

    [7] JWM Rogers, C Plett. Radio Frequency Integrated Circuit Design(2010).

    [8] SJ Han, AV Garcia, S Oida, KA Jenkins, W Haensch. Graphene radio frequency receiver integrated circuit. Nat Commun, 5, 3086(2014).

    [9] GM Rebeiz. Millimeter-wave and terahertz integrated circuit antennas. Proc IEEE, 80, 1748-1770(1992).

    [10] GT Reed, G Mashanovich, FY Gardes, DJ Thomson. Silicon optical modulators. Nat Photonics, 4, 518-526(2010).

    [11] A Shacham, K Bergman, LP Carloni. Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans Comput, 57, 1246-1260(2008).

    [12] AY Piggott, J Lu, KG Lagoudakis, J Petykiewicz, TM Babinec et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat Photonics, 9, 374-377(2015).

    [13] JB Pendry, D Schurig, DR Smith. Controlling electromagnetic fields. Science, 312, 1780-1782(2006).

    [14] F Sun, B Zheng, HS Chen, W Jiang, SW Guo et al. Transformation optics: from classic theory and applications to its new branches. Laser Photonics Rev, 11, 1700034(2017).

    [15] S Guenneau, C Amra, D Veynante. Transformation thermodynamics: cloaking and concentrating heat flux. Opt Express, 20, 8207-8218(2012).

    [16] WS Cai, UK Chettiar, AV Kildishev, VM Shalaev. Optical cloaking with metamaterials. Nat Photonics, 1, 224-227(2007).

    [17] D Schurig, JJ Mock, BJ Justice, SA Cummer, JB Pendry et al. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314, 977-980(2006).

    [18] Y Lai, J Ng, HY Chen, DZ Han, JJ Xiao et al. Illusion optics: the optical transformation of an object into another object. Phys Rev Lett, 102, 253902(2009).

    [19] Q Wu, JP Turpin, DH Werner. Integrated photonic systems based on transformation optics enabled gradient index devices. Light:Sci Appl, 1, e38(2012).

    [20] SY Li, YY Zhou, JJ Dong, XL Zhang, E Cassan et al. Universal multimode waveguide crossing based on transformation optics. Optica, 5, 1549-1556(2018).

    [21] LH Gabrielli, D Liu, SG Johnson, M Lipson. On-chip transformation optics for multimode waveguide bends. Nat Commun, 3, 1217(2012).

    [22] SY Li, LF Cai, DS Gao, JJ Dong, J Hou et al. Compact and broadband multimode waveguide bend by shape-optimizing with transformation optics. Photonics Res, 8, 1843-1849(2020).

    [23] XG Luo. Principles of electromagnetic waves in metasurfaces. Sci China Phys, Mech Astron, 58, 594201(2015).

    [24] C Huang, JN Yang, XY Wu, JK Song, MB Pu et al. Reconfigurable metasurface cloak for dynamical electromagnetic illusions. ACS Photonics, 5, 1718-1725(2018).

    [25] S Krasikov, A Tranter, A Bogdanov, Y Kivshar. Intelligent metaphotonics empowered by machine learning. Opto-Electron Adv, 5, 210147(2022).

    [26] C Qian, B Zheng, YC Shen, L Jing, EP Li et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat Photonics, 14, 383-390(2020).

    [27] TJ Cui, DR Smith, RP Liu. Metamaterials: Theory, Design, and Applications(2010).

    [28] JY Li, Y Gao, JP Huang. A bifunctional cloak using transformation media. J Appl Phys, 108, 074504(2010).

    [29] YG Ma, YC Liu, M Raza, YD Wang, SL He. Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously. Phys Rev Lett, 113, 205501(2014).

    [30] CW Lan, B Li, J Zhou. Simultaneously concentrated electric and thermal fields using fan-shaped structure. Opt Express, 23, 24475-24483(2015).

    [31] TZ Yang, X Bai, DL Gao, LZ Wu, BW Li et al. Invisible sensors: simultaneous sensing and camouflaging in multiphysical fields. Adv Mater, 27, 7752-7758(2015).

    [32] XW Zhang, X He, LZ Wu. A bilayer thermal-electric camouflage device suitable for a wide range of natural materials. Compos Struct, 261, 113319(2021).

    [33] M Moccia, G Castaldi, S Savo, Y Sato, V Galdi. Independent manipulation of heat and electrical current via bifunctional metamaterials. Phys Rev X, 4, 021025(2014).

    [34] CW Lan, K Bi, XJ Fu, B Li, J Zhou. Bifunctional metamaterials with simultaneous and independent manipulation of thermal and electric fields. Opt Express, 24, 23072-23080(2016).

    [35] YH Yang, HP Wang, FX Yu, ZW Xu, HS Chen. A metasurface carpet cloak for electromagnetic, acoustic and water waves. Sci Rep, 6, 20219(2016).

    [36] Y Zhou, J Chen, L Liu, Z Fan, YG Ma. Magnetic–acoustic biphysical invisible coats for underwater objects. NPG Asia Mater, 12, 27(2020).

    [37] Y Zhou, J Chen, R Chen, WJ Chen, Z Fan et al. Ultrathin electromagnetic–acoustic amphibious stealth coats. Adv Opt Mater, 8, 2000200(2020).

    [38] GY Song, C Zhang, Q Cheng, Y Jing, CW Qiu et al. Transparent coupled membrane metamaterials with simultaneous microwave absorption and sound reduction. Opt Express, 26, 22916-22925(2018).

    [39] F Sun, YC Liu, SL He. Surface transformation multi-physics for controlling electromagnetic and acoustic waves simultaneously. Opt Express, 28, 94-106(2020).

    [40] Q He, SY Xiao, X Li, L Zhou. Optic-null medium: realization and applications. Opt Express, 21, 28948-28959(2013).

    [41] W Yan, M Yan, M Qiu. Generalized nihility media from transformation optics. J Opt, 13, 024005(2010).

    [42] MM Sadeghi, SC Li, L Xu, B Hou, HY Chen. Transformation optics with Fabry-Pérot resonances. Sci Rep, 5, 8680(2015).

    [43] YM Zhang, Y Luo, JB Pendry, BL Zhang. Transformation-invariant metamaterials. Phys Rev Lett, 123, 067701(2019).

    [44] B Zheng, YH Yang, ZP Shao, QH Yan, NH Shen et al. Experimental realization of an extreme-parameter omnidirectional cloak. Research, 2019, 8282641(2019).

    [45] MH Fakheri, A Abdolali, HB Sedeh. Arbitrary shaped acoustic concentrators enabled by null media. Phys Rev Appl, 13, 034004(2020).

    [46] BR Li, F Sun, SL He. Acoustic surface transformation realized by acoustic-null materials using bilayer natural materials. Appl Phys Express, 10, 114001(2017).

    [47] J Li, L Fok, XB Yin, G Bartal, X Zhang. Experimental demonstration of an acoustic magnifying hyperlens. Nat Mater, 8, 931-934(2009).

    [48] C Navau, J Prat-Camps, O Romero-Isart, JI Cirac, A Sanchez. Long-distance transfer and routing of static magnetic fields. Phys Rev Lett, 112, 253901(2014).

    [49] FB Yang, BY Tian, LJ Xu, JP Huang. Experimental demonstration of thermal chameleonlike rotators with transformation-invariant metamaterials. Phys Rev Appl, 14, 054024(2020).

    [50] HB Sedeh, MH Fakheri, A Abdolali, F Sun, Y Ma. Feasible thermodynamics devices enabled by thermal-null medium. Phys Rev Appl, 14, 064034(2020).

    [51] RW Powell, YS Touloukian. Thermal conductivities of the elements. Science, 181, 999-1008(1973).

    [52] PC Bandyopadhyay, TK Chaki, S Srivastava, GS Sanyal. Dielectric behavior of polystyrene foam at microwave frequency. Polym Eng Sci, 20, 441-446(1980).

    [53] NH Ramli Sulong, SAS Mustapa, MK Abdul Rashid. Application of expanded polystyrene (EPS) in buildings and constructions: A review. J Appl Polym Sci, 136, 4752(2019).

    [54] FJ Garcia-Vidal, L Martín-Moreno, JB Pendry. Surfaces with holes in them: new plasmonic metamaterials. J Opt A:Pure Appl Opt, 7, S97-S101(2005).

    [55] J Shin, JT Shen, PB Catrysse, SH Fan. Cut-through metal slit array as an anisotropic metamaterial film. IEEE J Sel Top Quant, 12, 1116-1122(2006).

    [56] WJ Ji, J Luo, HC Chu, XX Zhou, XD Meng et al. Crosstalk prohibition at the deep-subwavelength scale by epsilon-near-zero claddings. Nanophotonics, 12, 2007-2017(2023).

    [57] PA Belov, Y Hao. Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime. Phys Rev B, 73, 113110(2006).

    [58] PA Belov, Y Hao, S Sudhakaran. Subwavelength microwave imaging using an array of parallel conducting wires as a lens. Phys Rev B, 73, 033108(2006).

    [59] J Luo, WX Lu, ZH Hang, HY Chen, B Hou et al. Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index. Phys Rev Lett, 112, 073903(2014).

    Yichao Liu, Xiaomin Ma, Kun Chao, Fei Sun, Zihao Chen, Jinyuan Shan, Hanchuan Chen, Gang Zhao, Shaojie Chen. Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium[J]. Opto-Electronic Science, 2024, 3(2): 230027
    Download Citation