[1] Feyisa G L, Meilby H, Fensholt R, et al. Automated water extraction index: A new technique for surface water mapping using landsat imagery
[2] Bond N R, Lake P S, Arthington A H. The impacts of drought on freshwater ecosystems: An Australian perspective
[3] Kondo H, Seo N, Yasuda T, et al. Post-flood-infectious diseases in Mozambique
[4] Li K Z, Wu S H, Dai E F, et al. Flood loss analysis and quantitative risk assessment in China
[5] Lazaro T R. Urban Hydrology: A Multidisciplinary Perspective
[11] Badrinarayanan V, Kendall A, Cipolla R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation
[12] Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
[13] Chen L C, Papandreou G, Kokkinos I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs
[14] Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
[16] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation
[17] Li J T, Xu M L, Xiu H L. U-net network for building information extraction of remote-sensing imagery
[18] Shamsolmoali P, Zareapoor M, Wang R L, et al. A novel deep structure U-Net for sea-land segmentation in remote sensing images
[19] Li R, Zheng S Y, Duan C X, et al. Multistage attention ResU-Net for semantic segmentation of fine-resolution remote sensing images
[21] Wang G J, Wu M J, Wei X K, et al. Water identification from high-resolution remote sensing images based on multidimensional densely connected convolutional neural networks
[25] Hu J, Shen L, Sun G. Squeeze-and-excitation networks
[26] Wang Q, Wu B, Zhu P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks
[27] Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module