• Semiconductor Optoelectronics
  • Vol. 44, Issue 5, 747 (2023)
LIU Yixuan1, DONG Xingpeng1, HE Shengwen2, WEI Lingling2..., SUN Zhongping3,*, BAI Shuang3 and LI Donghao1|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.16818/j.issn1001-5868.2023071901 Cite this Article
    LIU Yixuan, DONG Xingpeng, HE Shengwen, WEI Lingling, SUN Zhongping, BAI Shuang, LI Donghao. Intelligent Detection of Impaired Water in Remote Sensing Images Based on Multi-scale Feature Fusion U-Net[J]. Semiconductor Optoelectronics, 2023, 44(5): 747 Copy Citation Text show less
    References

    [1] Feyisa G L, Meilby H, Fensholt R, et al. Automated water extraction index: A new technique for surface water mapping using landsat imageryJ. Remote Sensing of Environment, 2014, 140: 23-35.

    [2] Bond N R, Lake P S, Arthington A H. The impacts of drought on freshwater ecosystems: An Australian perspectiveJ. Hydrobiologia, 2008, 600: 3-16.

    [3] Kondo H, Seo N, Yasuda T, et al. Post-flood-infectious diseases in MozambiqueJ. Prehospital and Disaster Medicine, 2002, 17(3): 126-133.

    [4] Li K Z, Wu S H, Dai E F, et al. Flood loss analysis and quantitative risk assessment in ChinaJ. Natural Hazards, 2012, 63(2): 737-760.

    [5] Lazaro T R. Urban Hydrology: A Multidisciplinary PerspectiveM. Ann Arbor Science Publishers, 1979.

    [11] Badrinarayanan V, Kendall A, Cipolla R. SegNet: A deep convolutional encoder-decoder architecture for image segmentationJ. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.

    [12] Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFsJ. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.

    [13] Chen L C, Papandreou G, Kokkinos I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFsJ/OL. ArXiv, 2014, 1412:70622023818.https://arxiv.org/pdf/1412.7062.pdf.

    [14] Chen L C, Papandreou G, Kokkinos I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFsJ. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2016, 40(4): 834-848.

    [16] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentationC// Inter. Conf. on Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241.

    [17] Li J T, Xu M L, Xiu H L. U-net network for building information extraction of remote-sensing imageryJ. Inter. J. of Online and Biomedical Engineering, 2018, 14(12): 179-190.

    [18] Shamsolmoali P, Zareapoor M, Wang R L, et al. A novel deep structure U-Net for sea-land segmentation in remote sensing imagesJ. IEEE J. of Sel. Topics in Applied Earth Observations and Remote Sensing, 2019, 12(9): 3219-3232.

    [19] Li R, Zheng S Y, Duan C X, et al. Multistage attention ResU-Net for semantic segmentation of fine-resolution remote sensing imagesJ. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 8009205.

    [21] Wang G J, Wu M J, Wei X K, et al. Water identification from high-resolution remote sensing images based on multidimensional densely connected convolutional neural networksJ. Remote Sensing, 2020, 12(5): 795-795.

    [25] Hu J, Shen L, Sun G. Squeeze-and-excitation networksC// Proc. of the 2018 IEEE Conf. on Computer Vision and Pattern Recognition, 2018: 7132-7141.

    [26] Wang Q, Wu B, Zhu P, et al. ECA-Net: efficient channel attention for deep convolutional neural networksC// Proc. of the 2020 IEEE Conf. on Computer Vision and Pattern Recognition, 2020: 11531-11539.

    [27] Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention moduleC// Proc. of the 15th European Conf. on Computer Vision, 2018: 3-19.

    LIU Yixuan, DONG Xingpeng, HE Shengwen, WEI Lingling, SUN Zhongping, BAI Shuang, LI Donghao. Intelligent Detection of Impaired Water in Remote Sensing Images Based on Multi-scale Feature Fusion U-Net[J]. Semiconductor Optoelectronics, 2023, 44(5): 747
    Download Citation