• Frontiers of Optoelectronics
  • Vol. 9, Issue 1, 87 (2016)
Zhiqian WU1、2, Yue SHEN2、*, Xiaoqiang LI1、3, Qing YANG3, and Shisheng LIN1、3
Author Affiliations
  • 1College of Microelectronics, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
  • 2State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering,
  • 3State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
  • show less
    DOI: 10.1007/s12200-016-0596-1 Cite this Article
    Zhiqian WU, Yue SHEN, Xiaoqiang LI, Qing YANG, Shisheng LIN. Green light-emitting diode based on graphene-ZnO nanowire van der Waals heterostructure[J]. Frontiers of Optoelectronics, 2016, 9(1): 87 Copy Citation Text show less
    References

    [1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669

    [2] Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R, Ruoff R S. Graphene and graphene oxide: synthesis, properties, and applications. Advanced Materials, 2010, 22(35): 3906–3924

    [3] Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191

    [4] Li X, Chen W, Zhang S, Wu Z, Wang P, Xu Z, Chen H, Yin W, Zhong H, Lin S. 6.5% efficient graphene/GaAs van der Waals heterostructure solar cell. Nano Energy, 2015, 16: 310–319

    [5] Li X, Zhu H, Wang K, Cao A, Wei J, Li C, Jia Y, Li Z, Li X, Wu D. Graphene-on-silicon Schottky junction solar cells. Advanced Materials, 2010, 22(25): 2743–2748

    [6] Liu Y, Wang F, Wang X, Wang X, Flahaut E, Liu X, Li Y, Wang X, Xu Y, Shi Y, Zhang R. Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors. Nature Communications, 2015, 6: 8589

    [7] Liu X, Ji X, Liu M, Liu N, Tao Z, Dai Q, Wei L, Li C, Zhang X, Wang B. High-performance Ge quantum dot decorated graphene/ zinc-oxide heterostructure infrared photodetector. ACS Applied Materials & Interfaces, 2015, 7(4): 2452–2458

    [8] Shelke N T, Karche B R. Hydrothermal synthesis of WS2/RGO sheet and their application in UV photodetector. Journal of Alloys and Compounds, 2015, 653: 298–303

    [9] Chang C W, Tan W C, Lu M L, Pan T C, Yang Y J, Chen Y F. Graphene/SiO2/p-GaN diodes: an advanced economical alternative for electrically tunable light emitters. Advanced Functional Materials, 2013, 23(32): 4043–4048

    [10] Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Applied Physics Letters, 1994, 64(13): 1687

    [11] Ohshima E, Ogino H, Niikura I, Maeda K, Sato M, Ito M, Fukuda T. Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method. Journal of Crystal Growth, 2004, 260(1–2): 166–170

    [12] Sun X W, Kwok H S. Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition. Journal of Applied Physics, 1999, 86(1): 408

    [13] Lin S S. Robust low resistivity p-type ZnO:Na films after ultraviolet illumination: the elimination of grain boundaries. Applied Physics Letters, 2012, 101(12): 122109

    [14] Ye Y, Gan L, Dai L, Meng H, Wei F, Dai Y, Shi Z, Yu B, Guo X, Qin G. Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes. Journal of Materials Chemistry, 2011, 21(32): 11760–11763

    [15] Nam G H, Baek S H, Park I K. Growth of ZnO nanorods on graphite substrate and its application for Schottky diode. Journal of Alloys and Compounds, 2014, 613: 37–41

    [16] Yang J, Zhao X, Shan X, Fan H, Yang L, Zhang Y, Li X. Blue-shift of UV emission in ZnO/graphene composites. Journal of Alloys and Compounds, 2013, 556: 1–5

    [17] Lin S, Ye Z, He H, Zeng Y J, Tang H, Zhao B, Zhu L. Catalyst-free synthesis of vertically aligned screw-shape InZnO nanorods array. Journal of Crystal Growth, 2007, 306(2): 339–343

    [18] Lin S S, Hong J I, Song J H, Zhu Y, He H P, Xu Z,Wei Y G, Ding Y, Snyder R L, Wang Z L. Phosphorus doped Zn1-xMgxO nanowire arrays. Nano Letters, 2009, 9(11): 3877–3882

    [19] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291(5510): 1947–1949

    [20] Lin S S, Chen B G, Pan C T, Hu S, Tian P, Tong LM. Unintentional doping induced splitting of G peak in bilayer graphene. Applied Physics Letters, 2011, 99(23): 233110

    [21] Lin S, Ye Z, He H, Zhao B, Zhu L, Huang J. Photoluminescence properties of ZnO nanoneedles grown by metal organic chemical vapor deposition. Journal of Applied Physics, 2008, 104(6): 064311

    [22] Rasool H I, Song E B, AllenMJ,Wassei J K, Kaner R B,Wang K L, Weiller B H, Gimzewski J K. Continuity of graphene on polycrystalline copper. Nano Letters, 2011, 11(1): 251–256

    [23] Das A, Pisana S, Chakraborty B, Piscanec S, Saha S K, Waghmare U V, Novoselov K S, Krishnamurthy H R, Geim A K, Ferrari A C, Sood A K. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotechnology, 2008, 3(4): 210–215

    [24] Yu R, Pan C,Wang Z L. High performance of ZnO nanowire protein sensors enhanced by the piezotronic effect. Energy & Environmental Science, 2013, 6(2): 494

    [25] Fu X W, Liao Z M, Zhou Y B, Wu H C, Bie Y Q, Xu J, Yu D P. Graphene/ZnO nanowire/graphene vertical structure based fastresponse ultraviolet photodetector. Applied Physics Letters, 2012, 100(22): 223114

    [26] í ek J, Valenta J, Hru ka P, Melikhova O, Procházka I, Novotny M, Bulí J. Origin of green luminescence in hydrothermally grown ZnO single crystals. Applied Physics Letters, 2015, 106(25): 251902

    [27] Liu R, You X C, Fu X W, Lin F, Meng J, Yu D P, Liao Z M. Gate modulation of graphene-ZnO nanowire Schottky diode. Scientific Reports, 2015, 5: 10125

    Zhiqian WU, Yue SHEN, Xiaoqiang LI, Qing YANG, Shisheng LIN. Green light-emitting diode based on graphene-ZnO nanowire van der Waals heterostructure[J]. Frontiers of Optoelectronics, 2016, 9(1): 87
    Download Citation