• Photonics Research
  • Vol. 5, Issue 5, 507 (2017)
Hsuan-Yun Kao1, Yu-Chieh Chi1, Cheng-Ting Tsai1, Shan-Fong Leong1, Chun-Yen Peng1, Huai-Yung Wang1, Jian Jang Huang1, Jau-Ji Jou2, Tien-Tsorng Shih2, Hao-Chung Kuo3, Wood-Hi Cheng4, Chao-Hsin Wu1, and Gong-Ru Lin1、*
Author Affiliations
  • 1Graduate Institute of Photonics and Optoelectronics, and Department of Electrical Engineering, National Taiwan University, No.?1, Sect. 4, Roosevelt Rd, Taipei 10617, Taiwan
  • 2Department of Electronic Engineering, National Kaohsiung University of Applied Sciences, No. 415, Chien Kung Rd, Sanmin District, Kaohsiung 80778, Taiwan
  • 3Graduate Institute of Electro-Optical Engineering, and Department of Photonics, National Chiao Tung University, No. 1001, University Rd, Hsinchu 30100, Taiwan
  • 4Graduate Institute of Optoelectronic Engineering, and Department of Electrical Engineering, National Chung Hsing University, No. 250, Kuo Kuang Rd, Taichung 402, Taiwan
  • show less
    DOI: 10.1364/prj.5.000507 Cite this Article Set citation alerts
    Hsuan-Yun Kao, Yu-Chieh Chi, Cheng-Ting Tsai, Shan-Fong Leong, Chun-Yen Peng, Huai-Yung Wang, Jian Jang Huang, Jau-Ji Jou, Tien-Tsorng Shih, Hao-Chung Kuo, Wood-Hi Cheng, Chao-Hsin Wu, Gong-Ru Lin. Few-mode VCSEL chip for 100-Gb/s transmission over 100 m multimode fiber[J]. Photonics Research, 2017, 5(5): 507 Copy Citation Text show less
    References

    [1] P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson, “High-speed 850 nm VCSELs operating error free up to 57 Gbit/s,” Electron. Lett. 49 , 1021–1023 (2013).

    [2] S. J. Trowbridge, “Ethernet and OTN—400G and beyond,” in Conference on Optical Fiber Communication , Los Angeles, California (2015), paper Th3H.1.

    [3] P. Westbergh, J. S. Gustavsson, . Haglund, M. Skold, A. Joel, and A. Larsson, “High-speed, low-current-density 850 nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15 , 694–703 (2009).

    [4] P. Westbergh, J. S. Gustavsson, B. K gel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL,” Electron. Lett. 46 , 1014–1016 (2010).

    [5] C.-T. Tsai, S. Chang, C.-Y. Pong, S.-F. Liang, Y.-C. Li, C.-H. Wu, T.-T. Shih, J.-J. Huang, H.-C. Kuo, W.-H. Cheng, and G.-R. Lin, “RIN suppressed multimode 850-nm VCSEL for 56-Gbps 16-QAM OFDM and 22-Gbps PAM-4 transmission,” in Conference on Optical Fiber Communication , Anaheim, California (2016), paper Th4D.2.

    [6] H. E. Li, and K. Iga, Vertical-Cavity Surface-Emitting Laser Devices (Springer, 2003).

    [7] D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “64 Gb/s transmission over 57 m MMF using an NRZ modulated 850 nm VCSEL,” in Conference on Optical Fiber Communication , San Francisco, California (2014), paper Th3C. 2.

    [8] P. Westbergh, R. Safaisini, E. Haglund, B. K gel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48 , 1145–1147 (2012).

    [9] A. Gholami, D. Molin, and P. Sillard, “Compensation of chromatic dispersion by modal dispersion in MMF—and VCSEL-based gigabit ethernet transmissions,” IEEE Photon. Technol. Lett. 21 , 645–647 (2009).

    [10] H.-Y. Kao, C.-T. Tsai, C.-Y. Peng, S.-F. Liang, Z.-K. Weng, Y.-C. Chi, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode 850-nm VCSEL chip with direct 16-QAM OFDM encoding at 80-Gbit/s for 100-m OM4 MMF link,” in Conference on Optical Fiber Communication , Los Angeles, California (2017), paper Th2A.38.

    [11] M. H. MacDougal, J. Geske, C. K. Lin, A. E. Bond, and P. D. Dapkus, “Low resistance intracavity-contacted oxide-aperture VCSEL’s,” IEEE Photon. Technol. Lett. 10 , 9–11 (1998).

    [12] Y. J. Yang, T. G. Dziura, T. Bardin, S. C. Wang, and R. Fernandez, “Continuous wave single transverse mode vertical-cavity surface-emitting lasers fabricated by helium implantation and zinc diffusion,” Electron. Lett. 28 , 274–276 (1992).

    [13] I. Harrison, H. P. Ho, B. Tuck, M. Henini, and O. H. Hughes, “Zn diffusion-induced disorder in AlAs/GaAs superlatttices,” Semicond. Sci. Technol. 4 , 841–846 (1989).

    [14] J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, and Y.-J. Yang, “High power and high-speed Zn-diffusion single fundamental-mode vertical cavity surface-emitting lasers at 850 nm wavelength,” IEEE Photon. Technol. Lett. 20 , 1121–1123 (2008).

    [15] N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, “25-Gbps operation of 1.1-μm-range InGaAs VCSELs for high-speed optical interconnections,” in Conference on Optical Fiber Communication , Anaheim, California (2006), paper OFA4.

    [16] W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M. C. Amann, “10-Gb/s data transmission using BCB passivated 1.55 μm InGaAlAs-InP VCSELs,” IEEE Photon. Technol. Lett. 18 , 424–426 (2006).

    [17] D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27 , 577–580 (2015).

    [18] P. Moser, J. A. Lott, and D. Bimberg, “Energy efficiency of directly modulated oxide-confined high bit rate 850 nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19 , 1702212 (2013).

    [19] K. Szczerba, P. Westbergh, E. Agrell, M. Karlsson, P. A. Andrekson, and A. Larsson, “Comparison of intersymbol interference power penalties for OOK and 4-PAM in short-range optical links,” J. Lightwave Technol. 31 , 3525–3534 (2013).

    [20] F. Breyer, S. C. J. Lee, S. Randel, and N. Hanik, “Comparison of OOK and PAM-4 modulation for 10 Gbit/s transmission over up to 300 m polymer optical fiber,” in Conference on Optical Fiber Communication , San Diego, California (2008), paper OWB5.

    [21] J. Lavrencik, S. Varighese, A. Varghese, G. Landry, Y. Sun, R. Shubochkin, and K. Balemarthy, “100 Gbps PAM-4 transmission over 100 m OM4 and wideband fiber using 850 nm VCSELs,” in Conference on European Conference and Exhibition on Optical Communication , Dusseldorf, Germany (2016), paper Th.1.C.5.

    [22] Y.-C. Chi, Y.-C. Li, H.-Y. Wang, P.-C. Peng, H.-H. Lu, and G.-R. Lin, “Optical 16-QAM-52-OFDM transmission at 4 Gbit/s by directly modulating a coherently injection-locked colorless laser diode,” Opt. Express 20 , 20071–20077 (2012).

    [23] F. Karinou, L. Deng, R. R. Lopez, K. Prince, J. B. Jensen, and I. T. Monroy, “Performance comparison of 850-nm and 1550-nm VCSELs exploiting OOK, OFDM, and 4-PAM over SMF/MMF links for low-cost optical interconnects,” Opt. Fiber Technol. 19 , 206–212 (2013).

    [24] R. Puerta, J. J. V. Olmos, I. T. Monroy, N. N. Ledentsov, and J. P. Turkiewicz, “Flexible multiCAP modulation and its application to 850 nm VCSEL-MMF links,” J. Lightwave Technol. 35 , 3168–3173 (2017).

    [25] I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21 , 444–452 (2015).

    [26] P. Moser, P. Wolf, G. Larisch, H. Li, J. Lott, N. Ledentsov, and D. Bimberg, “Energy-efficient oxide-confined high-speed VCSELs for optical interconnects,” Proc. SPIE 9001 , 9001103 (2014).

    [27] B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).

    [28] S. Arafin, A. Bachmann, and M.-C. Amann, “Transverse-mode characteristics of GaSb-based VCSELs with bried-tunnel junctions,” IEEE J. Sel. Top. Quantum Electron. 17 , 1576–1583 (2011).

    [29] H.-Y. Kao, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, Y.-C. Chi, J. J. Huang, H.-C. Kuo, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Comparison of single-/few-/multi-mode 850 nm VCSELs for optical OFDM transmission,” Opt. Express 25 , 16347–16363 (2017).

    [30] H. Uenohara, K. Tateno, T. Kagawa, Y. Ohiso, H. Tsuda, T. Kurokawa, and C. Amano, “Polarization-controlled 850-nm-wavelength vertical-cavity surface-emitting lasers grown on (311)B substrates by metal-organic chemical vapor deposition,” IEEE J. Sel. Top. Quantum Electron. 5 , 537–545 (1999).

    [31] J. M. Ostermann, P. Debernardi, C. Jalics, and R. Michalzik, “Shallow surface gratings for high-power VCSELs with one preferred polarization for all modes,” IEEE Photon. Technol. Lett. 17 , 1593–1595 (2005).

    [32] . Haglund, J. S. Gustavsson, J. Bengtsson, P. Jedrasik, and A. Larsson, “Design and evaluation of fundamental-mode and polarization-stabilized VCSELs with a subwavelength surface grating,” IEEE J. Quantum Electron. 42 , 231–240 (2006).

    [33] M.-C. Cheng, Y.-C. Chi, Y.-C. Li, C.-T. Tsai, and G.-R. Lin, “Suppressing the relaxation oscillation noise of injection-locked WRC-FPLD for directly modulated OFDM transmission,” Opt. Express 22 , 15724–15736 (2014).

    [34] L. A. Coldren, and S. W. Corzine, Diode Laser and Photonic Integrated Circuits (Wiley, 1995).

    [35] E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C.-C. Hasnain, and M.-C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating >100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16 , 6609–6618 (2008).

    [36] W. Shieh, and I. Djordjevic, OFDM for Optical Communications (Academic, 2009).

    CLP Journals

    [1] Kai Liu, Huize Fan, Yongqing Huang, Xiaofeng Duan, Qi Wang, Xiaomin Ren, Qi Wei, Shiwei Cai. A pair of integrated optoelectronic transceiving chips for optical interconnects[J]. Chinese Optics Letters, 2018, 16(9): 091301

    Hsuan-Yun Kao, Yu-Chieh Chi, Cheng-Ting Tsai, Shan-Fong Leong, Chun-Yen Peng, Huai-Yung Wang, Jian Jang Huang, Jau-Ji Jou, Tien-Tsorng Shih, Hao-Chung Kuo, Wood-Hi Cheng, Chao-Hsin Wu, Gong-Ru Lin. Few-mode VCSEL chip for 100-Gb/s transmission over 100 m multimode fiber[J]. Photonics Research, 2017, 5(5): 507
    Download Citation