• Photonics Research
  • Vol. 12, Issue 7, 1457 (2024)
Xiaoke Chen1, Lin Ma1,*, Zuyuan He1, Guiyuan Cao2..., Han Lin3 and Baohua Jia3,4|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, China
  • 3School of Science, RMIT University, Melbourne VIC 3000, Australia
  • 4The Australian Research Council (ARC) Industrial Transformation Training Centre in Surface Engineering for Advanced Materials (SEAM), RMIT University, Melbourne VIC 3000, Australia
  • show less
    DOI: 10.1364/PRJ.521005 Cite this Article Set citation alerts
    Xiaoke Chen, Lin Ma, Zuyuan He, Guiyuan Cao, Han Lin, Baohua Jia, "Ultra-high NA graphene oxide flat lens on a fiber facet with near diffraction-limited focusing," Photonics Res. 12, 1457 (2024) Copy Citation Text show less
    References

    [1] Y. Xiong, F. Xu. Multifunctional integration on optical fiber tips: challenges and opportunities. Adv. Photon., 2, 064001(2020).

    [2] X. Li, Q. Zhang, X. Chen. Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording. Sci. Rep., 3, 2819(2013).

    [3] H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photonics, 12, 540-547(2018).

    [4] C. Robens, S. Brakhane, W. Alt. High numerical aperture (NA= 0.92) objective lens for imaging and addressing of cold atoms. Opt. Lett., 42, 1043-1046(2017).

    [5] H. Ott. Single atom detection in ultracold quantum gases: a review of current progress. Rep. Prog. Phys., 79, 054401(2016).

    [6] M. Plidschun, H. Ren, J. Kim. Ultrahigh numerical aperture meta-fibre for flexible optical trapping. Light Sci. Appl., 10, 57(2021).

    [7] J. Kim, S. Kim, J. W. Song. Flexible endoscopic micro-optical coherence tomography for three-dimensional imaging of the arterial microstructure. Sci. Rep., 10, 9248(2020).

    [8] R. S. R. Ribeiro, P. Dahal, A. Guerreiro. Fabrication of Fresnel plates on optical fibres by fib milling for optical trapping, manipulation and detection of single cells. Sci. Rep., 7, 4485(2017).

    [9] C. W. Barnard, J. W. Lit. Single-mode fiber microlens with controllable spot size. Appl. Opt., 30, 1958-1962(1991).

    [10] S.-M. Yeh, Y.-K. Lu, S.-Y. Huang. A novel scheme of lensed fiber employing a quadrangular-pyramid-shaped fiber endface for coupling between high-power laser diodes and single-mode fibers. J. Lightwave Technol., 22, 1374(2004).

    [11] H. Kuwahara, M. Sasaki, N. Tokoyo. Efficient coupling from semiconductor lasers into single-mode fibers with tapered hemispherical ends. Appl. Opt., 19, 2578-2583(1980).

    [12] K.-R. Kim, S. Chang, K. Oh. Refractive microlens on fiber using UV-curable fluorinated acrylate polymer by surface-tension. IEEE Photon. Technol. Lett., 15, 1100-1102(2003).

    [13] A. Arbabi, Y. Horie, A. J. Ball. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun., 6, 7069(2015).

    [14] A. Zhan, S. Colburn, R. Trivedi. Low-contrast dielectric metasurface optics. ACS Photon., 3, 209-214(2016).

    [15] C. Zhang, S. Divitt, Q. Fan. Low-loss metasurface optics down to the deep ultraviolet region. Light Sci. Appl., 9, 55(2020).

    [16] Z. Wang, T. Yang, Y. Zhang. Flat lenses based on 2D perovskite nanosheets. Adv. Mater., 32, 2001388(2020).

    [17] W. Hadibrata, H. Wei, S. Krishnaswamy. Inverse design and 3D printing of a metalens on an optical fiber tip for direct laser lithography. Nano Lett., 21, 2422-2428(2021).

    [18] J. Wen, L. Chen, X. Chen. Use of dielectric metasurfaces to generate deep-subwavelength nondiffractive Bessel-like beams with arbitrary trajectories and ultralarge deflection. Laser Photon. Rev., 15, 2000487(2021).

    [19] F. Aieta, P. Genevet, M. A. Kats. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett., 12, 4932-4936(2012).

    [20] A. Arbabi, Y. Horie, M. Bagheri. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937-943(2015).

    [21] W. T. Chen, A. Y. Zhu, V. Sanjeev. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 13, 220-226(2018).

    [22] S. Kim, Y. Lim, H. Kim. Optical beam focusing by a single subwavelength metal slit surrounded by chirped dielectric surface gratings. Appl. Phys. Lett., 92, 013103(2008).

    [23] H. Ye, Q. Sun, Z. Guo. Theoretical realization of single-mode fiber integrated metalens for beam collimating. Opt. Express, 29, 27521-27529(2021).

    [24] X. Zhang, C. Guan, K. Wang. Multi-focus optical fiber lens based on all-dielectric metasurface. Chin. Opt. Lett., 19, 050601(2021).

    [25] H. Kim, J. Kim, H. An. Metallic Fresnel zone plate implemented on an optical fiber facet for super-variable focusing of light. Opt. Express, 25, 30290-30303(2017).

    [26] J. Yang, I. Ghimire, P. C. Wu. Photonic crystal fiber metalens. Nanophotonics, 8, 443-449(2019).

    [27] M. Zeisberger, H. Schneidewind, U. Hübner. Plasmonic metalens-enhanced single-mode fibers: a pathway toward remote light focusing. Adv. Photon. Res., 2, 2100100(2021).

    [28] H. Ren, J. Jang, C. Li. An achromatic metafiber for focusing and imaging across the entire telecommunication range. Nat. Commun., 13, 4183(2022).

    [29] M. Kim, S. Kim. High efficiency dielectric photonic crystal fiber metalens. Sci. Rep., 10, 20898(2020).

    [30] Q. Zhao, J. Qu, G. Peng. Endless single-mode photonics crystal fiber metalens for broadband and efficient focusing in near-infrared range. Micromachines, 12, 219(2021).

    [31] X. Ni, S. Ishii, A. V. Kildishev. Ultra-thin, planar, babinet-inverted plasmonic metalenses. Light Sci. Appl., 2, e72(2013).

    [32] A. Asadollahbaik, S. Thiele, K. Weber. Highly efficient dual-fiber optical trapping with 3D printed diffractive Fresnel lenses. ACS Photon., 7, 88-97(2019).

    [33] J. Kim, W. Ha, J. Park. Micro Fresnel zone plate lens inscribed on a hard polymer clad fiber using femtosecond pulsed laser. IEEE Photon. Technol. Lett., 25, 761-763(2013).

    [34] S. M. Rodrigues, J. S. Paiva, R. S. Ribeiro. Fabrication of multimode-single mode polymer fiber tweezers for single cell trapping and identification with improved performance. Sensors, 18, 2746(2018).

    [35] X. Zheng, B. Xu, S. Li. Free-standing graphene oxide mid-infrared polarizers. Nanoscale, 12, 11480-11488(2020).

    [36] G. Cao, H. Lin, S. Fraser. Resilient graphene ultrathin flat lens in aerospace, chemical, and biological harsh environments. ACS Appl. Mater. Interfaces, 11, 20298-20303(2019).

    [37] V. Chabot, D. Higgins, A. Yu. A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ. Sci., 7, 1564-1596(2014).

    [38] K. S. Novoselov, L. Colombo, P. Gellert. A roadmap for graphene. Nature, 490, 192-200(2012).

    [39] Y. Zhu, S. Murali, W. Cai. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater., 22, 3906-3924(2010).

    [40] J. Wu, H. Lin, D. J. Moss. Graphene oxide for photonics, electronics and optoelectronics. Nat. Rev. Chem., 7, 162-183(2023).

    [41] Y. Yang, H. Lin, B. Y. Zhang. Graphene-based multilayered metamaterials with phototunable architecture for on-chip photonic devices. ACS Photon., 6, 1033-1040(2019).

    [42] S. Wei, G. Cao, H. Lin. High tolerance detour-phase graphene-oxide flat lens. Photon. Res., 9, 2454-2463(2021).

    [43] X. Zheng, B. Jia, H. Lin. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nat. Commun., 6, 8433(2015).

    [44] Y. Xie, J. Zhang, S. Wang. High-efficiency broadband photonic crystal fiber metalens with a large numerical aperture. Opt. Commun., 481, 126524(2021).

    [45] X. Li, S. Wei, G. Cao. Graphene metalens for particle nanotracking. Photon. Res., 8, 1316-1322(2020).

    [46] S. Wei, G. Cao, H. Lin. A varifocal graphene metalens for broadband zoom imaging covering the entire visible region. ACS Nano, 15, 4769-4776(2021).

    [47] G. Cao, X. Gan, H. Lin. An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory. Opto-Electron. Adv., 1, 18001201(2018).

    Xiaoke Chen, Lin Ma, Zuyuan He, Guiyuan Cao, Han Lin, Baohua Jia, "Ultra-high NA graphene oxide flat lens on a fiber facet with near diffraction-limited focusing," Photonics Res. 12, 1457 (2024)
    Download Citation