• Chinese Journal of Lasers
  • Vol. 45, Issue 7, 0704001 (2018)
Ruyu Tang1、2, Dean Liu1、*, and Jianqiang Zhu1
Author Affiliations
  • 1 Joint Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2 University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/CJL201845.0704001 Cite this Article Set citation alerts
    Ruyu Tang, Dean Liu, Jianqiang Zhu. Micro-Size Damage Adaptive Detection Technology Based on Local Signal-to-Noise Ratio[J]. Chinese Journal of Lasers, 2018, 45(7): 0704001 Copy Citation Text show less
    References

    [1] Carr C W, Cross D A, Liao Z M et al. The stochastic nature of growth of laser-induced damage[C]. Proceedings of SPIE, 9532, 953212(2015).

    [2] Liao Z M, Nostrand M, Whitman P A et al. Analysis of optics damage growth at the National Ignition Facility[C]. Proceedings of SPIE, 9632, 963217(2015).

    [3] Conder A, Alger T, Azevedo S et al. Final optics damage inspection (FODI) for the National Ignition Facility[C]. Proceedings of SPIE, 6720, 672010(2007).

    [4] Liao Z M, Nostrand M, Carr W et al. Modeling of laser-induced damage and optic usage at the National Ignition Facility[C]. Proceedings of SPIE, 9983, 998304(2016).

    [5] Denis V, Beau V, Lacampagne L et al. The Laser Megajoule Facility: laser performances and comparison with computational simulation[C]. Proceedings of SPIE, 10525, 1052503(2018).

    [6] Mangote B, Tovena-Pecault I, Néauport J. Study of the LIDT degradation of optical components by intentional organic contamination[C]. Proceedings of SPIE, 8530, 853025(2012).

    [7] Spaeth M L, Wegner P J, Suratwala T I et al. Optics recycle loop strategy for NIF operations above UV laser-induced damage threshold[J]. Fusion Science and Technology, 69, 265-294(2016). http://www.tandfonline.com/doi/abs/10.13182/FST15-119

    [8] Spaeth M L, Manes K R, Widmayer C C et al. The National Ignition Facility wavefront requirements and optical architecture[J]. Optical Engineering, 43, 25-42(2004). http://spie.org/x648.xml?product_id=538478

    [9] Shaw M J, Williams W H, House R K et al. Laser performance operations model[J]. Optical Engineering, 43, 2885-2895(2004).

    [10] Feng B. Research on final optics damage online inspection technologies for ICF system[D]. Harbin: Harbin Institute of Technology, 8-10(2014).

    [11] Peng Z T. Study on online laser damage detection of optical components in high power laser complex optic components[D]. Mianyang: China Academy of Engineering Physics, 12-74(2011).

    [12] Lü X D. Research on defect detection and classification in ICF based on machine learning[D]. Harbin: Harbin Institute of Technology, 6-7(2015).

    [13] Kegelmeyer L M, Fong P W, Glenn S M et al. Local area signal-to-noise ratio (LASNR) algorithm for image segmentation[C]. Proceedings of SPIE, 6696, 66962H(2007).

    [14] Carr A, Kegelmeyer L, Liao Z M et al. Defect classification using machine learning[C]. Proceedings of SPIE, 7132, 713210(2008).

    [15] Verbeek P W, Vrooman H A. Vliet L J V. Low-level image processing by max-min filters[J]. Signal Processing, 15, 249-258(1988).

    [16] Bischof L, Adams R. Seeded region growing[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 16, 641-647(1994).

    Ruyu Tang, Dean Liu, Jianqiang Zhu. Micro-Size Damage Adaptive Detection Technology Based on Local Signal-to-Noise Ratio[J]. Chinese Journal of Lasers, 2018, 45(7): 0704001
    Download Citation