[2] CHENG Y P, ZHANG Y, Li Y Y, et al. Degradation behaviors of cement-free corundum-spinel castables in Ruhrstahl Heraeus refining ladle: Role of infiltrated steel[J]. Ceram Int, 2021, 47(22): 32008-32014.
[3] BRAULIO M A L, MARTINEZ A G T, LUZ A P, et a1. Basic slag attack of spinel-containing refractory castables[J]. Ceram Int, 2011, 37(6): 1935-1945.
[4] ZHANG L Y, YU R H, LI J W, et al. Fracture mechanism of alumina-spinel castables containing ZrO2 by wedge splitting test and digital image correlation technique[J]. Ceram Int, 2022, 48(11): 15430-15438.
[6] LUZ A P, GABRIEL A H G, CONSONI L B, et a1. Self-reinforced high-alumina refractory castables[J]. Ceram Int, 2018, 44(2): 2364-2375.
[7] LUZ A P, CONSONI L B, PAGLIOSA C, et al. Sintering effect of calcium carbonate in high-alumina refractory castables[J]. Ceram Int, 2018, 44(9): 10486-10497.
[8] SIMONIN F, OLAGNON C, MAXIMILIEN S, et al. Thermomechanical behavior of high-alumina refractory castables with synthetic spinel additions[J]. J Am Ceram Soc, 2010, 83(10): 2481-2490.
[9] FUHRER M, HEY A, LEE W E. Microstructural evolution in self-forming spinel/calcium aluminate-bonded castable refractories[J]. J Eur Ceram Soc, 1998, 18(7): 813-820,
[12] PAN L P, HE Z, LI Y W, et al. Effects of cement content on the microstructural evolution and mechanical properties of cement-bonded corundum castables[J]. Ceram Int, 2020, 46(4): 4634-4642.
[19] MARTINEZ A G T, LUZ A P, BRAULIO M A L, et al. Revisiting CA6 formation in cement-bonded alumina-spinel refractory castables[J]. J Eur Ceram Soc, 2017, 37(15): 5023-5034.
[21] HARMUTH H, BRADT R C. Investigation of refractory brittleness by fracture mechanical and fractographic methods[J]. Interceram: Refract Manual, 2010, (6): 6-10.
[22] FU L P, GU H Z, HUANG A, et al. Design, fabrication and properties of lightweight wear lining refractories: A review[J]. J Eur Ceram Soc, 2022, 42(3): 744-763.