• Chinese Journal of Lasers
  • Vol. 36, Issue 5, 1029 (2009)
Lan Jiang1、*, Lishan Li2, Sumei Wang1、3, and Hai-Lung Tsai1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3Laser-Based Manufacturing Laboratory Department of Mechanical and Aerospace Engineering,Missouri University of Science & Technology (formerly University of Missouri-Rolla) Rolla, MO 65409, USA
  • show less
    DOI: Cite this Article Set citation alerts
    Lan Jiang, Lishan Li, Sumei Wang, Hai-Lung Tsai. Microscopic energy transport through photon-electron-phonon interactions during ultrashort laser ablation of wide bandgap materials Part Ⅱ: phase change[J]. Chinese Journal of Lasers, 2009, 36(5): 1029 Copy Citation Text show less
    References

    [1] R. Stoian, D. Ashkenasi, A. Rosenfeld et al.. Coulomb explosion in ultrashort pulsed laser ablation of Al2O3[J]. Phys. Rev. B, 2000, 62(19): 13167~13173

    [2] E. N. Glezer, Y. Siegal, L. Huang et al.. Behavior of χ(2) during a laser-induced phase transition in GaAs[J]. Phys. Rev. B, 1995, 51(15): 9589~9596

    [3] A. Miotello, R. Kelly. Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature[J]. Appl. Phys. A Suppl., 1999, 69(7): S67~S73

    [4] M. Toulemonde, C. Dufour, A. Meftah et al.. Transient thermal processes in heavy ion irradiation of crystalline inorganic insulators[J]. Nucl. Instrum. Methods Phys. Res. B, 2000, 166: 903~912

    [5] R. Stoian, H. Varel, A. Rosenfeld et al.. Ion time-of-flight analysis of ultrashort pulsed laser-induced processing of Al2O3[J]. Appl. Surf. Sci., 2000, 165(1): 44~55

    [6] T. Brabec, F. Krausz. Intense few-cycle laser fields: Frontiers of nonlinear optics[J]. Rev. Mod. Phys., 2000, 72(2): 545~591

    [7] V. P. Krainov, A. S. Roshchupkin. Dynamics of the Coulomb explosion of large hydrogen iodide clusters irradiated by superintense ultrashort laser pulses[J]. Phys. Rev. A, 2001, 64(6): 063204

    [8] E. G. Gamaly, V. T. Tikhonchuk, A. V. Rode. COLA03, October 5-10, Hersonissos, Crete, Greece, 2003

    [9] P. L. Silvestrelli, A. Alavi, M. Parrinello et al.. Ab initio molecular dynamics simulation laser melting of silicon[J]. Phys. Rev. Lett., 1996, 77(15): 3149~3152

    [10] L. Jiang, H. L. Tsai. Femtosecond Laser Ablation: Challenges and Opportunities, NSF Workshop on “Unsolved Problems and Research Needs in Thermal Aspects of Material Removal Processes, June 10-12, Stillwater, OK, 2003

    [11] R. Stoian, A. Rosenfeld, D. Ashkenasi et al.. Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation[J]. Phys. Rev. Lett., 2002, 88(9): 097603

    [12] P. Stampfli, K. H. Bennemann. Dynamical theory of the laser-induced lattice instability of silicon[J]. Phys. Rev. B, 1992, 46(17): 10686~10692

    [13] K. Sokolowski-Tinten, J. Bialkowski, M. Boing et al.. Thermal and nonthermal melting of gallium arsenide after femtosecond laser excitation[J]. Phys. Rev. B, 1998, 58(18): R11805~R11808

    [14] C. Cornaggia. in Molecules and Clusters in Intense Laser Fields, edited by J. Posthumus Cambridge University Press, Cambridge, U. K., 2001

    [15] H. P. Cheng, J. D. Gillaspy. Nanoscale modification of silicon surfaces via Coulomb explosion[J]. Phys. Rev. B, 1997, 55(4): 2628~2636

    [16] P. Simon, J. Ihlemann. Machining of submicron structures on metals and semiconductors by ultrashort UV-laser pulses[J]. Appl. Phys. A, 1996, 63(5): 505~508

    [17] A. C. Tam, H. K. Park, C. P. Grigoropoulos. Laser cleaning of surface contaminants[J]. Appl. Surf. Sci., 1998, 127~129: 721~725

    [18] J. L. Brand, A. C. Tam. Mechanism of picosecond ultraviolet laser sputtering of sapphire at 266 nm[J]. Appl. Phys. Lett., 1990, 56(10): 883~885

    [19] D. Ashkenasi, A. Rosenfeld, H. Varel et al.. Laser processing of sapphire with picosecond and sub-picosecond pulses[J]. Appl. Surf. Sci., 1997, 120: 65~80

    [20] M. Ye, C. P. Grigoropoulos. Time-of-flight and emission spectroscopy study of femtosecond laser ablation of titanium[J]. J. Appl. Phys., 2001, 89(9): 5183~5190

    [21] E. M. Lifshitz, L. P. Pitaevskii. Physical Kinetics[M]. Pergamon, Oxford, 1981

    [22] V. Y. Bychenkov, V. T. Tikhonchuk, S. V. Tolokonnikov. Nuclear reactions triggered by laser-accelerated high-energy ions[J]. J. Exp. Theor. Phys., 1999, 88(6): 1137~1142

    [23] E. G. Gamaly, A. V. Rode, B. Luther-Davies et al.. Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics[J]. Phys. Plas., 2002, 9(3): 949~957

    [24] N. M. Bulgakova, R. Stoian, A. Rosenfeld et al.. Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials[J]. Phys. Rev. B, 2004, 69(5): 054102

    [25] N. M. Bulgakova, R. Stoian, A. Rosenfeld et al.. A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: The problem of Coulomb explosion[J]. Appl. Phys. A, 2005, 81(2): 345~356

    [26] F. Ladieu, P. Martin, S. Guizard. Measuring thermal effects in femtosecond laser-induced breakdown of dielectrics[J]. Appl. Phys. Lett., 2002, 81(6): 957~959

    [27] V. Schmidt, W. Husinsky, G. Betz. Dynamics of laser desorption and ablation of metals at the threshold on the femtosecond time scale[J]. Phys. Rev. Lett., 2000, 85(16): 3516~3519

    [28] E. Axente, S. Noel, J. Hermann et al.. Correlation between plasma expansion and damage threshold by femtosecond laser ablation of fused silica[J]. J. Phys. D: Appl. Phys., 2008, 41(10): 105216

    [29] K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri et al.. Transient states of matter during short pulse laser ablation[J]. Phys. Rev. Lett., 1998, 81(1): 224~227

    [30] H. O. Jeschke, M. E. Garcia, K. H. Bennemann. Theory for the ultrafast ablation of graphite films[J]. Phys. Rev. Lett., 2001, 87(1): 015003

    [31] M. Lenzner, J. Krüger, S. Sartania et al.. Femtosecond optical breakdown in dielectrics[J]. Phys. Rev. Lett., 1998, 80(18): 4076~4079

    [32] M. Li, S. Menon, J. P. Nibarger et al.. Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics[J]. Phys. Rev. Lett., 1999, 82(12): 2394~2397

    [33] D. Du, X. Liu, G. Korn et al.. Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs[J]. Appl. Phys. Lett., 1994, 64(23): 3071~3073

    [34] B. C. Stuart, M. D. Feit, S. Herman et al.. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics[J]. Phys. Rev. B, 1996, 53(4): 1749~1761

    [35] M. D. Perry, B. C. Stuart, P. S. Banks et al.. Ultrashort-pulse laser machining of dielectric materials[J]. J. Appl. Phys., 1999, 85(9): 6803~6810

    [36] L. V. Keldysh. Ionization in the field of a strong electromagnetic wave[J]. Sov. Phys. JETP, 1965, 20: 1307~1314

    [37] V. E. Gruzdev. Photoionization rate in wide band-gap crystals[J]. Phys. Rev. B, 2007, 75(20): 205106

    [38] V. E. Gruzdev. in Laser Ablation and its Applications[M]. ed. by C.R. Phipps, Springer, Berlin Heidelberg New York, 2006, 99~121

    [39] V. E. Gruzdev. Features of the laser ionization of crystalline broad-band insulators[J]. J. Opt. Technol., 2006, 73(6): 385~390

    [40] V. E. Gruzdev, J. K. Chen. Laser-induced ionization and intrinsic breakdown of wide band-gap solids[J]. Appl. Phys. A, 2008, 90(2): 255~261

    [41] O. Efimov, S. Juodkazis, H. Misawa. Intrinsic single- and multiple-pulse laser-induced damage in silicate glasses in the femtosecond-to-nanosecond region[J]. Phys. Rev. A, 2004, 69(4): 042903

    [42] S. Juodkazis, T. Kondo, A. Rode et al.. Three-dimensional recording and structuring of chalcogenide glasses by femtosecond pulses[C]. SPIE, 2004, 5662: 179~184

    [43] I. H. Chowdhury, A. Q. Wu, X. Xu et al.. Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics[J]. Appl. Phys. A, 2005, 81(8): 1627~1632

    [44] A. Q. Wu, I. H. Chowdhury, X. Xu. Femtosecond laser absorption in fused silica: Numerical and experimental investigation[J]. Phys. Rev. B, 2005, 72(8): 085128

    [45] J. B. Ashcom, R. R. Gattass, C. B. Schaffer et al.. Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica[J]. J. Opt. Soc. Am. B, 2006, 23(11): 2317~2322

    [46] L. B. Glebov. Intrinsic laser-induced breakdown of silicate glasses[C]. SPIE, 2002, 4679: 321~331

    [47] L. B. Glebov, O. M. Efimov. Study of the characteristics of and mechanism of optical breakdown[J]. Bull. Acad. Sci. USSR Phys. Ser., 1985, 49: 94

    [48] O. M. Efimov, L. B. Glebov, V. S. Popikov et al.. Laser-induced damage of glasses by pulsed radiation in nano-picosecond region[C]. SPIE, 1996, 2770: 162~167

    [49] T. Q. Jia, H. X. Chen, M. Huang et al.. Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals[J]. Phys. Rev. B, 2006, 73(5): 054105

    [50] T. Q. Jia, Z. Z. Xu, X. X. Li et al.. Microscopic mechanisms of ablation and micromachining of dielectrics by using femtosecond lasers[J]. Appl. Phys. Lett., 2003, 82(24): 4382~4384

    [51] Y. M. Oh, S. H. Lee, S. Park et al.. A numerical study on ultra-short pulse laser-induced damage on dielectrics using the Fokker-Planck equation[J]. Int. J. Heat Mass Transfer, 2006, 49(7~8): 1493~1500

    [52] D. Ashkenasi, M. Lorenz, R. Stoian et al.. Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation[J]. Appl. Surf. Sci., 1999, 150(1~4): 101~106

    [53] J. Krüger, M. Lenzner, S. Martin et al.. Single- and multi-pulse femtosecond laser ablation of optical filter materials[J]. Appl. Surf. Sci., 2003, 208~209: 233~237

    [54] X. C. Wang, G. C. Lim, H. Y. Zheng et al.. Femtosecond pulse laser ablation of sapphire in ambient air[J]. Appl. Surf. Sci., 2004, 228(1~4): 221~226

    [55] J. Krüger, W. Kautek. The femtosecond pulse laser: a new tool for micromachining[J]. Laser Phys., 1999, 9(1): 30~40

    [56] M. D. Shirk, P. A. Molian. A review of ultrashort pulsed laser ablation of materials[J]. J. Laser Appl., 1998, 10(1): 18~28

    [57] L. Jiang, H. L. Tsai. Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse[J]. Int. J. Heat Mass Transfer, 2005, 48(3~4): 487~499

    [58] L. Jiang, H. L. Tsai. Energy transport and nanostructuring of dielectrics by femtosecond laser pulse trains[J]. J. Heat Transfer, 2006, 128(9): 926~933

    [59] I. M. Burakov, N. M. Bulgakova, R. Stoian et al.. Theoretical investigations of material modification using temporally shaped femtosecond laser pulses[J].Appl. Phys. A, 2005, 81(8):1639~1645

    Lan Jiang, Lishan Li, Sumei Wang, Hai-Lung Tsai. Microscopic energy transport through photon-electron-phonon interactions during ultrashort laser ablation of wide bandgap materials Part Ⅱ: phase change[J]. Chinese Journal of Lasers, 2009, 36(5): 1029
    Download Citation