• Acta Photonica Sinica
  • Vol. 47, Issue 3, 301001 (2018)
SUN Pei-yu1、2, YUAN Ke-e1, YANG Jie1、3, and HU Shun-xing1、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/gzxb20184703.0301001 Cite this Article
    SUN Pei-yu, YUAN Ke-e, YANG Jie, HU Shun-xing. Measurement of Extinction Coefficient of Near-surface Aerosol by CCD Lidar in the Daytime[J]. Acta Photonica Sinica, 2018, 47(3): 301001 Copy Citation Text show less
    References

    [1] YAMAMOTO G, TANAKA M. Increase of global albedo due to air pollution[J]. Journal of Atmospheric Sciences, 1972, 29(1): 1405-1412.

    [2] BARNES J E, BRONNER S, BECK R, et al. Boundary layer scattering measurements with a charge-coupled device camera lidar[J]. Applied Optics, 2003, 42(15): 2647-2652.

    [3] BARNES J E, HOFMANN D J. Variability in the stratospheric background aerosol over Mauna Loa Observatory[J]. Geophysical Research Letters, 2001, 28(15): 2895-2898.

    [4] BARNES J E, SHARMA N C, KAPLAN T B. Atmospheric aerosol profiling with a bistatic imaging lidar system[J]. Applied Optics, 2007, 46(15): 2922-2929.

    [5] BARNES J E, SHARMA N C P. An inexpensive active optical remote sensing instrument for assessing aerosol distributions[J]. Journal of the Air & Waste Management Association, 2012, 62(2): 198-203.

    [6] LIN Jin-ming, MISHIMA H, KAWAHARA T D, et al. Bistatic imaging lidar measurements of aerosols, fogs, and clouds in the lower atmosphere[C]. SPIE, 1998, 3504: 550-557.

    [7] MEKI K, YAMAGUCHI K, LI X, et al. Range-resolved bistatic imaging lidar for the measurement of the lower atmosphere[J]. Optics Letters, 1996, 21(17): 1318-1320.

    [8] REAGAN J A, BYRNE D M, HERMAN B M. Bistatic LIDAR: A tool for characterizing atmospheric particulates: part i---the remote sensing problem[J]. IEEE Transactions on Geoscience & Remote Sensing, 1982, 20(3): 229-235.

    [9] REAGAN J A, BYRNE D M, HERMAN B M. Bistatic LIDAR: A tool for characterizing atmospheric particulates: part ii---the inverse problem[J]. IEEE Transactions on Geoscience & Remote Sensing, 2007, GE-20(3): 236-243.

    [10] LIU Xiao-qin, HOU Zai-hong, QIN Lai-an, et al. A portable imaging lidar for lower boundary layer atmospheric measurement[C]. SPIE, 2015: 96450R.

    [11] MA Xiao-min, ZHANG Hui, SHAN Hui-hui, et al. Statistical distribution of aerosol backscattering coefficient profiles in near-ground at west suburb of Hefei in 2014[J]. Chinese Journal of Lasers, 2016, 43(7): 0705001.

    [12] PARAMESWARAN K, ROSE K O, MURTHY B V K. Aerosol characteristics from bistatic lidar observations[J]. Journal of Geophysical Research Atmospheres, 1984, 89(D2): 2541-2552.

    [13] MENG Xiang-qian, HU Shun-xing, WANG Ying-jian, et al. Aerosol scattering phase function and visibility based on charge coupled device[J]. Acta Optica Sinica, 2012, 32(9): 8-13.

    [14] FERNALD F G. Analysis of atmospheric lidar observations: some comments[J]. Applied Optics, 1984, 23(5): 652-653.

    CLP Journals

    [1] MA Yu-zhao, LIU Jia-qi, WANG Qiang-qiang, XIONG Xing-long, LI Meng, FENG Shuai. Inversion of Aerosol Lidar Ratio and Its Effect on Slant Visibility Based on Fernald-PSO Method[J]. Acta Photonica Sinica, 2019, 48(3): 301001

    [2] LIU Ren, XIE Jun-feng, MO Fan, XIA Xue-fei. Waveform Simulation of Spaceborne Laser Altimeter Echo Based on Fine Terrain[J]. Acta Photonica Sinica, 2018, 47(11): 1128004

    SUN Pei-yu, YUAN Ke-e, YANG Jie, HU Shun-xing. Measurement of Extinction Coefficient of Near-surface Aerosol by CCD Lidar in the Daytime[J]. Acta Photonica Sinica, 2018, 47(3): 301001
    Download Citation