• Chinese Journal of Lasers
  • Vol. 49, Issue 5, 0507106 (2022)
Cheng Wang1、*, Qi Zhou1, Yijun Chen1, Minghui Chen1, Huazhong Xiang1, Gang Zheng1, Jie Zhao2, and Dawei Zhang3
Author Affiliations
  • 1Institute of Biomedical Optics and Optometry, Key Lab of Medical Optical Technology and Instruments, Ministry of Education, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2Ophthalmology, Shanghai Yangpu District Shidong Hospital, Shanghai 200438, China
  • 3Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instrument and System, Ministry of Education, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3788/CJL202249.0507106 Cite this Article Set citation alerts
    Cheng Wang, Qi Zhou, Yijun Chen, Minghui Chen, Huazhong Xiang, Gang Zheng, Jie Zhao, Dawei Zhang. Axial Eye Length Measurement System Based on Low Coherence Interferometry[J]. Chinese Journal of Lasers, 2022, 49(5): 0507106 Copy Citation Text show less
    References

    [1] Wang L H, Huang W Y, Huang S S et al. Ten-year incidence of primary angle closure in elderly Chinese: the Liwan Eye study[J]. The British Journal of Ophthalmology, 103, 355-360(2019).

    [2] Lee A C, Qazi M A, Pepose J S. Biometry and intraocular lens power calculation[J]. Current Opinion in Ophthalmology, 19, 13-17(2008).

    [3] Fayette R M, Cakiner-Egilmez T. What factors affect intraocular lens power calculation?[J]. Insight (American Society of Ophthalmic Registered Nurses), 40, 15-18(2015).

    [4] Meng W H, Butterworth J, Malecaze F et al. Axial length of myopia: a review of current research[J]. Ophthalmologica, 225, 127-134(2011).

    [5] Saw S M, Chua W H, Gazzard G et al. Eye growth changes in myopic children in Singapore[J]. The British Journal of Ophthalmology, 89, 1489-1494(2005).

    [6] Llorente L, Barbero S, Cano D et al. Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations[J]. Journal of Vision, 4, 288-298(2004).

    [7] Wang C, Dong X N, Xiang H Z et al. Progress and measurement methods of axial eye length[J]. Optical Instruments, 41, 72-79(2019).

    [8] Olsen T. Sources of error in intraocular lens power calculation[J]. Journal of Cataract & Refractive Surgery, 18, 125-129(1992).

    [9] Holzer M P, Mamusa M, Auffarth G U. Accuracy of a new partial coherence interferometry analyser for biometric measurements[J]. The British Journal of Ophthalmology, 93, 807-810(2009).

    [10] Fercher A F, Roth E. Ophthalmic laser interferometry[J]. Proceedings of SPIE, 0658, 48-51(1986).

    [11] Shen Z W, Xue L P, Mo T et al. Research advances in clinical application of Lenstar LS900[J]. International Eye Science, 12, 2123-2125(2012).

    [12] Zheng W Y, Zhou W, Sun H. Research progress in clinical application of lenstar LS900[J]. Medical Recapitulate, 20, 671-673(2014).

    [13] Chen Y H, Cao M. Clinical comparative study of Suoer SW9000 and Carle Zeiss IOLMaster in bio-measurement[J]. Journal of Clinical Ophthalmology, 27, 178-181(2019).

    [14] Hua Y J, Xiao Q Y, Wu Q. Comparison of ocular variables obtained from Tomey OA-2000 and IOLMaster[J]. Recent Advances in Ophthalmology, 37, 845-848(2017).

    [15] Mandal P, Berrow E J, Naroo S A et al. Validity and repeatability of the Aladdin ocular biometer[J]. The British Journal of Ophthalmology, 98, 256-258(2014).

    [16] Dai C X, Zhou C Q, Fan S H et al. Optical coherence tomography for whole eye segment imaging[J]. Optics Express, 20, 6109-6115(2012).

    [17] Fan S H, Li L, Li Q et al. Dual band dual focus optical coherence tomography for imaging the whole eye segment[J]. Biomedical Optics Express, 6, 2481-2493(2015).

    [18] Grulkowski I, Liu J J, Potsaid B et al. Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers[J]. Biomedical Optics Express, 3, 2733-2751(2012).

    [19] Grulkowski I, Liu J J, Zhang J Y et al. Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers[J]. Ophthalmology, 120, 2184-2190(2013).

    [20] Kunert K S, Peter M, Blum M et al. Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry[J]. Journal of Cataract & Refractive Surgery, 42, 76-83(2016).

    [21] Ruiz-Mesa R, Abengózar-Vela A, Ruiz-Santos M. Comparison of a new Scheimpflug imaging combined with partial coherence interferometry biometer and a low-coherence reflectometry biometer[J]. Journal of Cataract & Refractive Surgery, 43, 1406-1412(2017).

    [22] Zhao H L, Zhang J. Variation of ocular biometric parameters and their relationships in cataract patients with over-long axial length before and after phacoemulsification[J]. International Eye Science, 19, 78-82(2019).

    [23] Liu S S, Wang Y, Zhang W Q et al. Large-scale axial length measuring system based on SS-OCT[J]. Acta Photonica Sinica, 48, 0512002(2019).

    [24] Ma S Q, Gong Y, Li L et al. Optical coherence tomography system for measurement of eye axial parameters[J]. Optics and Precision Engineering, 27, 1318-1326(2019).

    [25] Zhang Y N, Li P D, Wang C et al. Design of weak optical signal detection system for measuring eye axial length[J]. Journal of Applied Optics, 41, 898-903(2020).

    [26] Findl O, Drexler W, Menapace R et al. Improved prediction of intraocular lens power using partial coherence interferometry[J]. Journal of Cataract & Refractive Surgery, 27, 861-867(2001).

    [27] Tan Y D, Xu X, Zhang S L. Precision measurement and applications of laser interferometry[J]. Chinese Journal of Lasers, 48, 1504001(2021).

    [28] Lu X Y, Zhao C L, Cai Y J. Research progress on methods and applications for phase reconstruction under partially coherent illumination[J]. Chinese Journal of Lasers, 47, 0500016(2020).

    [29] Jin C Q, Yang B X, Hu X B et al. Measurement method of lens central thickness with high precision based on low coherence interferometry[J]. Chinese Journal of Lasers, 44, 0604002(2017).

    [30] Yang M, Wang C, Li P D et al. Axial eye length measurement system design[J]. Optical Instruments, 41, 74-79(2019).

    [31] Cai G, Wang C, Dong X N et al. A refractive index measurement method based on optical heterodyne interferometry[J]. Optical Technique, 44, 269-272(2018).

    [32] Yin Y K, Yu K, Yu C Z et al. 3D imaging using geometric light field: a review[J]. Chinese Journal of Lasers, 48, 1209001(2021).

    [33] Sheng H, Bottjer C A, Bullimore M A. Ocular component measurement using the Zeiss IOLMaster[J]. Optometry and Vision Science, 81, 27-34(2004).

    [34] Portney L G, Watkins M P[M]. Foundation of clinical research: application to practice(1993).

    [35] Hu Y H, Zhang X Y, Xu S L et al. Research progress of laser reflective tomography techniques[J]. Chinese Journal of Lasers, 48, 0401002(2021).

    Cheng Wang, Qi Zhou, Yijun Chen, Minghui Chen, Huazhong Xiang, Gang Zheng, Jie Zhao, Dawei Zhang. Axial Eye Length Measurement System Based on Low Coherence Interferometry[J]. Chinese Journal of Lasers, 2022, 49(5): 0507106
    Download Citation