• High Power Laser and Particle Beams
  • Vol. 34, Issue 1, 011001 (2022)
Mu Li1, Hongping Zhang2, Shi Chen1, Peidong Tao1、3, Hang Zhu1, Cangtao Zhou1, Jianheng Zhao4, and Chengwei Sun5、6
Author Affiliations
  • 1Shenzhen Key Laboratory of Ultra-intense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
  • 2Big Data and Internet College, Shenzhen Technology University, Shenzhen 518118, China
  • 3College of Physics, Sichuan University, Chengdu 610065, China
  • 4Institute of Applied Electronics, CAEP, Mianyang 621900, China
  • 5Institute of Fluid Physics, CAEP, Mianyang 621900, China
  • 6Shanghai Institute of Laser Plasma, CAEP, Shanghai 201800, China
  • show less
    DOI: 10.11884/HPLPB202234.210357 Cite this Article
    Mu Li, Hongping Zhang, Shi Chen, Peidong Tao, Hang Zhu, Cangtao Zhou, Jianheng Zhao, Chengwei Sun. Laser driven dynamic compression of materials[J]. High Power Laser and Particle Beams, 2022, 34(1): 011001 Copy Citation Text show less
    References

    [1] Fratanduono D E, Millot M, Braun D G, et al. Establishing gold and platinum standards to 1 terapascal using shockless compression[J]. Science, 372, 1063-1068(2021).

    [2] Jeanloz R. Calibrating experiments at atom-crushing pressures[J]. Science, 372, 1037-1038(2021).

    [3] Eliezer S. The interaction of high-power lasers with plasmas[J]. Plasma Physics and Controlled Fusion, 45, 181(2003).

    [4] Campbell E M, Goncharov V N, Sangster T C, et al. Laser-direct-drive program: promise, challenge, and path forward[J]. Matter and Radiation at Extremes, 2, 37-54(2017).

    [5] Duan Xiaoxi, Zhang Chen, Guan Zanyang, et al. Transparency measurement of lithium fluoride under laser-driven accelerating shock loading[J]. Journal of Applied Physics, 128, 015902(2020).

    [8] Ng A, Pasini D, Celliers P, et al. Ablation scaling in steady-state ablation dominated by inverse-bremsstrahlung absorption[J]. Applied Physics Letters, 45, 1046-1048(1984).

    [9] Dahmani F, Kerdja T. Laser-intensity and wavelength dependence of mass-ablation rate, ablation pressure, and heat-flux inhibition in laser-produced plasmas[J]. Physical Review A, 44, 2649-2655(1991).

    [10] Fratanduono D E, Boehly T R, Celliers P M, et al. The direct measurement of ablation pressure driven by 351-nm laser radiation[J]. Journal of Applied Physics, 110, 073110(2011).

    [11] Xue Quanxi, Wang Zhebin, Jiang Shaoen, et al. Laser-direct-driven quasi-isentropic experiments on aluminum[J]. Physics of Plasmas, 21, 072709(2014).

    [12] Ferriter N, Maiden D E, Winslow A M, et al. Laser-beam optimization for momentum transfer by laser-supported detonation waves[J]. AIAA Journal, 15, 1597-1603(1977).

    [13] Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 2, 3933-4024(1995).

    [14] Duffy T S, Smith R F. Ultra-high pressure dynamic compression of geological materials[J]. Frontiers in Earth Science, 7, 23(2019).

    [15] Jeanloz R, Celliers P M, Collins G W, et al. Achieving high-density states through shock-wave loading of precompressed samples[J]. Proceedings of the National Academy of Sciences of the United States of America, 104, 9172-9177(2007).

    [16] Bradley D K, Eggert J H, Hicks D G, et al. Shock compressing diamond to a conducting fluid[J]. Physical Review Letters, 93, 195506(2004).

    [17] Eggert J H, Hicks D G, Celliers P M, et al. Melting temperature of diamond at ultrahigh pressure[J]. Nature Physics, 6, 40-43(2010).

    [18] Edwards J, Lorenz K T, Remington B A, et al. Laser-driven plasma loader for shockless compression and acceleration of samples in the solid state[J]. Physical Review Letters, 92, 075002(2004).

    [20] Smith R F, Eggert J H, Jankowski A, et al. Stiff response of aluminum under ultrafast shockless compression to 110 GPA[J]. Physical Review Letters, 98, 065701(2007).

    [21] Brygoo S, Millot M, Loubeyre P, et al. Analysis of laser shock experiments on precompressed samples using a quartz reference and application to warm dense hydrogen and helium[J]. Journal of Applied Physics, 118, 195901(2015).

    [22] Brygoo S, Loubeyre P, Millot M, et al. Evidence of hydrogen−helium immiscibility at Jupiter-interior conditions[J]. Nature, 593, 517-521(2021).

    [23] Millot M, Hamel S, Rygg J R, et al. Experimental evidence for superionic water ice using shock compression[J]. Nature Physics, 14, 297-302(2018).

    [24] Kimura T, Ozaki N, Okuchi T, et al. Significant static pressure increase in a precompression cell target for laser-driven advanced dynamic compression experiments[J]. Physics of Plasmas, 17, 054502(2010).

    [25] Crandall L E, Rygg J R, Spaulding D K, et al. Equation of state of CO2 shock compressed to 1 TPa[J]. Physical Review Letters, 125, 165701(2020).

    [26] Shu Hua, Li Jiangtao, Tu Yucheng, et al. Measurement of the sound velocity of shock compressed water[J]. Scientific Reports, 11, 6116(2021).

    [27] Kraus D, Vorberger J, Pak A, et al. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions[J]. Nature Astronomy, 1, 606-611(2017).

    [28] Jeanloz R. Shock wave equation of state and finite strain theory[J]. Journal of Geophysical Research: Solid Earth, 94, 5873-5886(1989).

    [29] Jeanloz R. Universal equation of state[J]. Physical Review B, 38, 805-807(1988).

    [30] Jeanloz R. Finite-strain equation of state for high-pressure phases[J]. Geophysical Research Letters, 8, 1219-1222(1981).

    [31] Fu Sizu, Huang Xiuguang, Ma Minxun, et al. Analysis of measurement error in the experiment of laser equation of state with impedance-match way and the Hugoniot data of Cu up to ~ 2.24TPa with high precision[J]. Journal of Applied Physics, 101, 043517(2007).

    [32] Manuel A M, Millot M, Seppala L G, et al. Upgrades to the VISARstreaked optical pyrometer (SOP) system on NIF[C]Proceedings of SPIE 9591, Target Diagnostics Physics Engineering f Inertial Confinement Fusion IV. 2015: 959104.

    [33] Celliers P M, Bradley D K, Collins G W, et al. Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility[J]. Review of Scientific Instruments, 75, 4916-4929(2004).

    [34] Weng Jidong, Wang Xiang, Ma Yun, et al. A compact all-fiber displacement interferometer for measuring the foil velocity driven by laser[J]. Review of Scientific Instruments, 79, 113101(2008).

    [35] Tao Tianjiong, Liu Shenggang, Ma Heli, et al. Twiddle factor neutralization method for heterodyne velocimetry[J]. Review of Scientific Instruments, 85, 013101(2014).

    [36] Luo Binqiang, Li Mu, Wang Guiji, et al. Strain rate and hydrostatic pressure effects on strength of iron[J]. Mechanics of Materials, 114, 142-146(2017).

    [37] Grant S C, Ao T, Seagle C T, et al. Equation of state measurements on iron near the melting curve at planetary core conditions by shock and ramp compressions[J]. Journal of Geophysical Research: Solid Earth, 126, e2020JB020008(2021).

    [38] Park H S, Ali S J M, Celliers P M, et al. Techniques for studying materials under extreme states of high energy density compression[J]. Physics of Plasmas, 28, 060901(2021).

    [39] Prisbrey S T, Park H S, Remington B A, et al. Tailored ramp-loading via shock release of stepped-density reservoirs[J]. Physics of Plasmas, 19, 056311(2012).

    [40] Löwer T, Kondrashov V N, Basko M, et al. Reflectivity and optical brightness of laser-induced shocks in silicon[J]. Physical Review Letters, 80, 4000-4003(1998).

    [41] Ng A, Ao T. Nonequilibrium and non-steady-state evolution of a shock state[J]. Physical Review Letters, 91, 035002(2003).

    [42] Lee P A, Citrin P H, Eisenberger P, et al. Extended X-ray absorption fine structure—its strengths and limitations as a structural tool[J]. Reviews of Modern Physics, 53, 769-806(1981).

    [43] Yaakobi B, Boehly T R, Sangster T C, et al. Extended X-ray absorption fine structure measurements of quasi-isentropically compressed vanadium targets on the OMEGA laser[J]. Physics of Plasmas, 15, 062703(2008).

    [44] Yaakobi B, Boehly T R, Meyerhofer D D, et al. Extended X-ray absorption fine structure measurement of phase transformation in iron shocked by nanosecond laser[J]. Physics of Plasmas, 12, 092703(2005).

    [45] Yaakobi B, Meyerhofer D D, Boehly T R, et al. Extended X-ray absorption fine structure measurements of laser-shocked V and Ti and crystal phase transformation in Ti[J]. Physical Review Letters, 92, 095504(2004).

    [46] Brown F L H, Wilson K R, Cao Jianshu. Ultrafast extended X-ray absorption fine structure (EXAFS)--theoretical considerations[J]. The Journal of Chemical Physics, 111, 6238-6246(1999).

    [47] Ping Y, Coppari F, Hicks D G, et al. Solid iron compressed up to 560 GPa[J]. Physical Review Letters, 111, 065501(2013).

    [48] Voigt K, Zhang M, Ramakrishna K, et al. Demonstration of an X-ray Raman spectroscopy setup to study warm dense carbon at the high energy density instrument of European XFEL[J]. Physics of Plasmas, 28, 082701(2021).

    [49] Millot M. Identifying and discriminating phase transitions along decaying shocks with line imaging Doppler interferometric velocimetry and streaked optical pyrometry[J]. Physics of Plasmas, 23, 014503(2016).

    [50] Millot M, Dubrovinskaia N, Černok A, et al. Shock compression of stishovite and melting of silica at planetary interior conditions[J]. Science, 347, 418-420(2015).

    [51] Spaulding D K, Mcwilliams R S, Jeanloz R, et al. Evidence for a phase transition in silicate melt at extreme pressure and temperature conditions[J]. Physical Review Letters, 108, 065701(2012).

    [52] Hicks D G, Boehly T R, Eggert J H, et al. Dissociation of liquid silica at high pressures and temperatures[J]. Physical Review Letters, 97, 025502(2006).

    [53] McCoy C A, Marshall M C, Polsin D N, et al. Hugoniot, sound velocity, and shock temperature of MgO to 2300 GPa[J]. Physical Review B, 100, 014106(2019).

    [54] Roycroft R, Bowers B, Smith H, et al. Streaked optical pyrometer for proton-driven isochoric heating experiments of solid and foam targets[J]. AIP Advances, 10, 045220(2020).

    [55] Gregor M C, Boni R, Sorce A, et al. Absolute calibration of the OMEGA streaked optical pyrometer for temperature measurements of compressed materials[J]. Review of Scientific Instruments, 87, 114903(2016).

    [56] Miller J E, Boehly T R, Melchior A, et al. Streaked optical pyrometer system for laser-driven shock-wave experiments on OMEGA[J]. Review of Scientific Instruments, 78, 034903(2007).

    [57] Bradley D K, Eggert J H, Smith R F, et al. Diamond at 800 GPa[J]. Physical Review Letters, 102, 075503(2009).

    [58] Yoo C S, Holmes N C, Ross M, et al. Shock temperatures and melting of iron at Earth core conditions[J]. Physical Review Letters, 70, 3931-3934(1993).

    [59] Li Jun, Wu Qiang, Li Jiabo, et al. Shock melting curve of iron: a consensus on the temperature at the Earth's inner core boundary[J]. Geophysical Research Letters, 47, e2020GL087758(2020).

    [60] Krygier A, Coppari F, Kemp G E, et al. Developing a high-flux, high-energy continuum backlighter for extended X-ray absorption fine structure measurements at the National Ignition Facility[J]. Review of Scientific Instruments, 89, 10F114(2018).

    [61] Krygier A, Kemp G E, Coppari F, et al. Optimized continuum X-ray emission from laser-generated plasma[J]. Applied Physics Letters, 117, 251106(2020).

    [62] Albert F, Lemos N, Shaw J L, et al. Betatron X-ray radiation in the self-modulated laser wakefield acceleration regime: prospects for a novel probe at large scale laser facilities[J]. Nuclear Fusion, 59, 032003(2019).

    [63] Stoupin S, Thorn D B, Ose N, et al. The multi-optics high-resolution absorption X-ray spectrometer (HiRAXS) for studies of materials under extreme conditions[J]. Review of Scientific Instruments, 92, 053102(2021).

    [64] Milathianaki D, Boutet S, Williams G J, et al. Femtosecond visualization of lattice dynamics in shock-compressed matter[J]. Science, 342, 220-223(2013).

    [65] Wehrenberg C E, Mcgonegle D, Bolme C, et al. In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics[J]. Nature, 550, 496-499(2017).

    [66] Lazicki A, McGonegle D, Rygg J R, et al. Metastability of diamond ramp-compressed to 2 terapascals[J]. Nature, 589, 532-535(2021).

    [67] Briggs R, Coppari F, Gorman M G, et al. Measurement of body-centered cubic gold and melting under shock compression[J]. Physical Review Letters, 123, 045701(2019).

    [68] Fratanduono D E, Smith R F, Ali S J, et al. Probing the solid phase of noble metal copper at terapascal conditions[J]. Physical Review Letters, 124, 015701(2020).

    [69] Millot M, Coppari F, Rygg J R, et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice[J]. Nature, 569, 251-255(2019).

    [70] Wang Jue, Coppari F, Smith R F, et al. X-ray diffraction of molybdenum under ramp compression to 1 TPa[J]. Physical Review B, 94, 104102(2016).

    [71] Kalantar D H, Belak J F, Collins G W, et al. Direct observation of the α-ε transition in shock-compressed iron via nanosecond X-ray diffraction[J]. Physical Review Letters, 95, 075502(2005).

    [73] Suggit M, Kimminau G, Hawreliak J, et al. Nanosecond X-ray Laue diffraction apparatus suitable for laser shock compression experiments[J]. Review of Scientific Instruments, 81, 083902(2010).

    [74] Comley A J, Maddox B R, Rudd R E, et al. Strength of shock-loaded single-crystal tantalum [100] determined using in situ broadband X-ray Laue diffraction[J]. Physical Review Letters, 110, 115501(2013).

    [75] Suggit M J, Higginbotham A, Hawreliak J A, et al. Nanosecond white-light Laue diffraction measurements of dislocation microstructure in shock-compressed single-crystal copper[J]. Nature Communications, 3, 1224(2012).

    [76] Cerantola V, Rosa A D, Konôpková Z, et al. New frontiers in extreme conditions science at synchrotrons and free electron lasers[J]. Journal of Physics:Condensed Matter, 33, 274003(2021).

    [77] Shen Guoyin, Wang Yanbin, Dewaele A, et al. Toward an international practical pressure scale: a proposal for an IPPS ruby gauge (IPPS-Ruby2020)[J]. High Pressure Research, 40, 299-314(2020).

    [78] Celliers P M, Millot M, Brygoo S, et al. Insulator-metal transition in dense fluid deuterium[J]. Science, 361, 677-682(2018).

    [79] Desjarlais M P, Knudson M D, Redmer R. Comment on “Insulator-metal transition in dense fluid deuterium”[J]. Science, 363, eaaw0969(2019).

    [80] Knudson M D, Desjarlais M P, Becker A, et al. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium[J]. Science, 348, 1455-1460(2015).

    [81] Stevenson D J. Thermodynamics and phase separation of dense fully ionized hydrogen-helium fluid mixtures[J]. Physical Review B, 12, 3999-4007(1975).

    [82] Mankovich C R, Fortney J J. Evidence for a dichotomy in the interior structures of Jupiter and Saturn from helium phase separation[J]. The Astrophysical Journal, 889, 51(2020).

    [83] Schöttler M, Redmer R. Ab initio calculation of the miscibility diagram for hydrogen-helium mixtures[J]. Physical Review Letters, 120, 115703(2018).

    [84] Morales M A, Hamel S, Caspersen K, et al. Hydrogen-helium demixing from first principles: from diamond anvil cells to planetary interiors[J]. Physical Review B, 87, 174105(2013).

    [85] Li Liming, Jiang Xun, West R A, et al. Less absorbed solar energy and more internal heat for Jupiter[J]. Nature Communications, 9, 3709(2018).

    [86] Liu Shangfei, Hori Y, Müller S, et al. The formation of Jupiter’s diluted core by a giant impact[J]. Nature, 572, 355-357(2019).

    [87] Nettelmann N, Helled R, Fortney J J, et al. New indication for a dichotomy in the interior structure of Uranus and Neptune from the application of modified shape and rotation data[J]. Planetary and Space Science, 77, 143-151(2013).

    [88] Stevenson D J. Formation of the giant planets[J]. Planetary and Space Science, 30, 755-764(1982).

    [89] Cavazzoni C, Chiarotti G L, Scandolo S, et al. Superionic and metallic states of water and ammonia at giant planet conditions[J]. Science, 283, 44-46(1999).

    [90] Umemoto K, Wentzcovitch R M, Allen P B. Dissociation of MgSiO3 in the cores of gas giants and terrestrial exoplanets[J]. Science, 311, 983-986(2006).

    [91] Mazevet S, Tsuchiya T, Taniuchi T, et al. Melting and metallization of silica in the cores of gas giants, ice giants, and super Earths[J]. Physical Review B, 92, 014105(2015).

    [92] Sugimura E, Komabayashi T, Ohta K, et al. Experimental evidence of superionic conduction in H2O ice[J]. The Journal of Chemical Physics, 137, 194505(2012).

    [93] Demontis P, LeSar R, Klein M L. New high-pressure phases of ice[J]. Physical Review Letters, 60, 2284-2287(1988).

    [94] Knudson M D, Desjarlais M P, Lemke R W, et al. Probing the interiors of the ice giants: shock compression of water to 700 GPa and 3.8 g/cm3[J]. Physical Review Letters, 108, 091102(2012).

    [95] Celliers P M, Collins G W, Hicks D G, et al. Electronic conduction in shock-compressed water[J]. Physics of Plasmas, 11, L41-L44(2004).

    [96] Smith R F, Eggert J H, Jeanloz R, et al. Ramp compression of diamond to five terapascals[J]. Nature, 511, 330-333(2014).

    [97] Hicks D G, Boehly T R, Celliers P M, et al. High-precision measurements of the diamond Hugoniot in and above the melt region[J]. Physical Review B, 78, 174102(2008).

    [98] Gregor M C, Fratanduono D E, McCoy C A, et al. Hugoniot and release measurements in diamond shocked up to 26 Mbar[J]. Physical Review B, 95, 144114(2017).

    [99] Wang Peng, Zhang Chen, Jiang Shaoen, et al. Density-dependent shock Hugoniot of polycrystalline diamond at pressures relevant to ICF[J]. Matter and Radiation at Extremes, 6, 035902(2021).

    [100] McWilliams R S, Spaulding D K, Eggert J H, et al. Phase transformations and metallization of magnesium oxide at high pressure and temperature[J]. Science, 338, 1330-1333(2012).

    [101] Coppari F, Smith R F, Eggert J H, et al. Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures[J]. Nature Geoscience, 6, 926-929(2013).

    [102] Root S, Townsend J P, Knudson M D. Shock compression of fused silica: an impedance matching standard[J]. Journal of Applied Physics, 126, 165901(2019).

    [103] Hicks D G, Boehly T R, Celliers P M, et al. Shock compression of quartz in the high-pressure fluid regime[J]. Physics of Plasmas, 12, 082702(2005).

    [104] Knudson M D, Desjarlais M P. Adiabatic release measurements in α-quartz between 300 and 1200 GPa: characterization of α-quartz as a shock standard in the multimegabar regime[J]. Physical Review B, 88, 184107(2013).

    [105] Knudson M D, Desjarlais M P. Shock compression of quartz to 1.6 TPa: redefining a pressure standard[J]. Physical Review Letters, 103, 225501(2009).

    [106] Fratanduono D E, Millot M, Kraus R G, et al. Thermodynamic properties of MgSiO3 at super-Earth mantle conditions[J]. Physical Review B, 97, 214105(2018).

    [107] Sekine T, Ozaki N, Miyanishi K, et al. Shock compression response of forsterite above 250 GPa[J]. Science Advances, 2, e1600157(2016).

    [108] Bolis R M, Morard G, Vinci T, et al. Decaying shock studies of phase transitions in MgO-SiO2 systems: implications for the super-Earths' interiors[J]. Geophysical Research Letters, 43, 9475-9483(2016).

    [109] Fbes J W. Shock wave compression of condensed matter: a primer[M]. Berlin, Heidelberg: Springer, 2012.

    [110] Duffy T, Madhusudhan N, Lee K K M. Mineralogy of super-earth planets[J]. Treatise on Geophysics, 2, 149-178(2015).

    [111] Duffy T S, Ahrens T J. Sound velocities at high pressure and temperature and their geophysical implications[J]. Journal of Geophysical Research: Solid Earth, 97, 4503-4520(1992).

    [112] Duffy T S, Vos W L, Zha Changsheng, et al. Sound velocities in dense hydrogen and the interior of Jupiter[J]. Science, 263, 1590-1593(1994).

    [113] Hu Jianbo, Zhou Xianming, Dai Chengda, et al. Shock-induced bct-bcc transition and melting of tin identified by sound velocity measurements[J]. Journal of Applied Physics, 104, 083520(2008).

    [114] Nissim N, Eliezer S, Werdiger M. The sound velocity throughout the P-ρ phase-space with application to laser induced shock wave in matter precompressed by a diamond anvil cell[J]. Journal of Applied Physics, 115, 213503(2014).

    [115] Ohtani E, Mibe K, Sakamaki T, et al. Sound velocity measurement by inelastic X-ray scattering at high pressure and temperature by resistive heating diamond anvil cell[J]. Russian Geology and Geophysics, 56, 190-195(2015).

    [116] McCoy C A, Knudson M D, Root S. Absolute measurement of the Hugoniot and sound velocity of liquid copper at multimegabar pressures[J]. Physical Review B, 96, 174109(2017).

    [117] Li Mu, Zhang Shuai, Zhang Hongping, et al. Continuous sound velocity measurements along the shock hugoniot curve of quartz[J]. Physical Review Letters, 120, 215703(2018).

    [118] Fratanduono D E, Munro D H, Celliers P M, et al. Hugoniot experiments with unsteady waves[J]. Journal of Applied Physics, 116, 033517(2014).

    [119] McCoy C A, Gregor M C, Polsin D N, et al. Measurements of the sound velocity of shock-compressed liquid silica to 1100 GPa[J]. Journal of Applied Physics, 120, 235901(2016).

    [120] Fratanduono D E, Celliers P M, Braun D G, et al. Equation of state, adiabatic sound speed, and Gruneisen coefficient of boron carbide along the principal Hugoniot to 700 GPa[J]. Physical Review B, 94, 184107(2016).

    [121] Henderson B J, Marshall M C, Boehly T R, et al. Shock-compressed silicon: hugoniot and sound speed up to 2100 GPa[J]. Physical Review B, 103, 094115(2021).

    Mu Li, Hongping Zhang, Shi Chen, Peidong Tao, Hang Zhu, Cangtao Zhou, Jianheng Zhao, Chengwei Sun. Laser driven dynamic compression of materials[J]. High Power Laser and Particle Beams, 2022, 34(1): 011001
    Download Citation