[1] LI S, KANG X, FANG L, et al. Pixel-level image fusion: a survey of the state of the art[J]. Information Fusion, 2017, 33: 100-112.
[2] ZHANG H, XU H, TIAN X, et al. Image fusion meets deep learning: a survey and perspective[J]. Information Fusion, 2021, 76: 323-336.
[8] LI X, YAN L, QI P, et al. Polarimetric imaging via deep learning: a review[J]. Remote Sensing, 2023, 15(6): 1540.
[9] YANG Fengbao, DONG Anran, ZHANG Lei, et al. Infrared polarization image fusion based on combination of NSST and improved PCA[J]. Journal of Measurement Science and Instrumentation, 2016, 7(2): 176-184.
[15] LIU Y, LIU S, WANG Z. A general framework for image fusion based on multiscale transform and sparse representation[J]. Information Fusion, 2015, 24(C): 147-164.
[17] ZHU P, LIU L, ZHOU X. Infrared polarization and intensity image fusion based on bivariate BEMD and sparse representation[J]. Multimedia Tools and Applications, 2021, 80(3): 4455-4471.
[18] ZHANG S, YAN Y, SU L, et al. Polarization image fusion algorithm based on improved PCNN[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2013, 9045.
[29] HU J, MOU L, Schmitt A, et al. FusioNet: a two-stream convolutional neural network for urban scene classification using PolSAR and hyperspectral data[C]// Proceedings of the 2017 Joint Urban Remote Sensing Event (JURSE), 2017: 1-4.
[30] ZHANG J, SHAO J, CHEN J, et al. PFNet: an unsupervised deep network for polarization image fusion[J]. Optics Letters, 2020, 45(6): 1507-1510.
[31] WANG S, MENG J, ZHOU Y, et al. Polarization image fusion algorithm using NSCT and CNN[J]. Journal of Russian Laser Research, 2021, 42(4): 443-452.
[32] ZHANG J, SHAO J, CHEN J, et al. Polarization image fusion with self-learned fusion strategy[J]. Pattern Recognition, 2021, 118(22): 108045.
[33] XU H, SUN Y, MEI X, et al. Attention-Guided polarization image fusion using salient information distribution[J]. IEEE Transactions on Computational Imaging, 2022, 8: 1117-1130.
[35] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems, 2014: 2672-2680.
[36] MA J, YU W, LIANG P, et al. FusionGAN: a generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11-26.
[37] ZHAO C, WANG T, LEI B, Medical image fusion method based on dense block and deep convolutional generative adversarial network[J]. Neural Comput. & Applic., 2021, 33: 6595-6610.
[38] LIU Q, ZHOU H, XU Q, et al. PSGAN: a generative adversarial network for remote sensing image pan-sharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(12): 10227-10242.
[39] MA J, XU H, JIANG J, et al. DDcGAN: a dual-discriminator conditional generative adversarial network for multi-resolution image fusion[J]. IEEE Transactions on Image Processing, 2020, 29: 4980-4995.
[40] LI J, HUO H, LI C, et al. Attention FGAN: infrared and visible image fusion using attention-based generative adversarial networks[J]. IEEE Transactions on Multimedia, 2021, 23: 1383-1396.
[41] MA J, ZHANG H, SHAO Z, et al. GANMcC: a generative adversarial network with multi-classification constraints for infrared and visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-14
[42] WEN Z, WU Q, LIU Z, et al. Polar-spatial feature fusion learning with variational generative-discriminative network for PolSAR classi-fication[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8914-8927.
[43] DING X, WANG Y, FU X. Multi-polarization fusion generative adversarial networks for clear underwater imaging[J]. Optics and Lasers in Engineering, 2022, 152: 106971.
[44] LIU J, DUAN J, HAO Y, et al. Semantic-guided polarization image fusion method based on a dual-discriminator GAN[J]. Optic Express, 2022, 30: 43601-43621.
[45] SUN R, SUN X, CHEN F, et al. An artificial target detection method combining a polarimetric feature extractor with deep convolutional neural networks[J]. International Journal of Remote Sensing, 2020, 41: 4995-5009.
[46] ZHANG Y, Morel O, Blanchon M, et al. Exploration of deep learning based multimodal fusion for semantic road scene segmen-tation[C]//14th International Conference on Computer Vision Theory and Applications, 2019: 336-343.
[47] XIANG K, YANG K, WANG K. Polarization-driven semantic segmentation via efficient attention-bridged fusion[J]. Optic Express, 2021, 29: 4802-4820.
[51] HUANG F, KE C, WU X, et al. Polarization dehazing method based on spatial frequency division and fusion for a far-field and dense hazy image[J]. Applied Optics, 2021, 60: 9319-9332.
[57] BA Y, Gilbert A, WANG F, et al. Deep shape from polarization[C]//Computer Vision–ECCV 2020: 16th European Conference, 2020: 554-571.
[60] ZENG X, LUO Y, ZHAO X, et al. An end-to-end fully-convolutional neural network for division of focal plane sensors to reconstruct S0, DoLP, and AoP[J]. Optic Express, 2019, 27: 8566-8577.
[61] Morimatsu M, Monno Y, Tanaka M, et al. Monochrome and color polarization demosaicking using edge-aware residual interpolation [C]//2020 IEEE International Conference on Image Processing(ICIP), 2020: 2571-2575.
[62] LI N, ZHAO Y, PAN Q, et al. Full-time monocular road detection using zero-distribution prior of angle of polarization[C]//European Conference on Computer Vision (ECCV), 2020: 457-473.
[63] LI N, ZHAO Y, PAN Q, et al. Illumination-invariant road detection and tracking using LWIR polarization characteristics[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 180: 357-369.
[64] SUN Y, ZHANG J, LIANG R. Color polarization demosaicking by a convolutional neural network[J]. Optic Letter, 2021, 46: 4338-4341.
[65] QIU S, FU Q, WANG C, et al. Linear polarization demosaicking for monochrome and colour polarization focal plane arrays[J]. Computer Graphics Forum, 2021, 40: 77-89.