• Acta Photonica Sinica
  • Vol. 50, Issue 10, 1004006 (2021)
Runze MA1, Xiaoming ZHANG1、2, Shuai FENG1、2, Jun ZHENG3, Yingqiang XU3, and Chuanbo LI1、2、*
Author Affiliations
  • 1School of Sciences,Minzu University of China,Beijing 100081,China
  • 2Optoelectronics Research Center,Minzu University of China,Beijing 100081,China
  • 3Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China
  • show less
    DOI: 10.3788/gzxb20215010.1004006 Cite this Article
    Runze MA, Xiaoming ZHANG, Shuai FENG, Jun ZHENG, Yingqiang XU, Chuanbo LI. Research Status and Prospect of Infrared Photoelectric Detection Technology(Invited)[J]. Acta Photonica Sinica, 2021, 50(10): 1004006 Copy Citation Text show less
    References

    [1] W HERSCHEL. 'The Scientific Papers of Sir William Herschel' at 100. Astronomy & Geophysics, 53, 13(2012).

    [2] Weida HU, Qing LI, Xiaoshuang CHEN et al. Recent progress on advanced infrared photodetectors. Acta Physica Sinica, 68, 42-76(2019).

    [3] E S BARR. Historical survey of the early development of the infrared spectral region. American Journal of Physics, 28, 42-54(1960).

    [4] T W CASE. Notes on the change of resistance of certain substances in light. Physical Review, 9, 305-310(1917).

    [5] A ROGALSKI. Next decade in infrared detectors, 10433, 104330L(2017).

    [6] D J LOVELL. The development of lead salt detectors. American Journal of Physics, 37, 467-478(1969).

    [7] W D LAWSON, S N NIELSEN, E H PUTLEY et al. Preparation and properties of HgTe and mixed crystals of HgTe-CdTe. Journal of Physics and Chemistry of Solids, 9, 325-329(1959).

    [8] T ELLIOTT. Recollections of MCT work in the UK at Malvern and Southampton, 7298, 72982M(2009).

    [9] A ROGALSKI. Infrared detectors: an overview. Infrared Physics & Technology, 43, 187-210(2002).

    [10] A ROGALSKI. Progress in focal plane array technologies. Progress in Quantum Electronics, 36, 342-473(2012).

    [11] D A SCRIBNER, M R KRUER, J M KILLIANY. Infrared focal plane array technology. Proceedings of the IEEE, 79, 66-85(1991).

    [12] Liqing ZHOU. The status and development of substrates for HgCdTe epilayer. Laser & Infrared, 35, 808-811(2005).

    [13] G C HOLST, S W MCHUGH. Review of thermal imaging system performance, 1, 78-84(1992).

    [14] S K PARK, R A SCHOWENGERDT, M A KACZYNSKI. Modulation-transfer-function analysis for sampled image systems. Applied Optics, 23, 2572(1984).

    [15] G PLANINSIC. Infrared thermal imaging: fundamentals, research and applications. European Journal of Physics, 32, 1431(2011).

    [16] J ROBINSON, M KINCH, M MARQUIS et al. Case for small pixels: system perspective and FPA challenge, 9100, 91000I(2014).

    [17] G C HOLST, R G DRIGGERS. Small detectors in infrared system design. Optical Engineering, 51, 6401(2012).

    [18] J M ARMSTRONG, M R SKOKAN, M A KINCH et al. HDVIP five-micron pitch HgCdTe focal plane arrays, 9070, 907033(2014).

    [19] A ROGALSKI, M KOPYTKO, P MARTYNIUK et al. Comparison of performance limits of the HOT HgCdTe photodiodes with colloidal quantum dot infrared detectors. Bulletin of the Polish Academy of Sciences Technical Sciences, 68, 845-855(2020).

    [20] Yanli SHI. Choice and development of the third-generation infrared detectors. Infrared Technology, 35, 1-8(2013).

    [21] A C GOLDBERG, S W KENNERLY, J W LITTLE et al. Comparison of HgCdTe and QWIP dual-band focal plane arrays, 4369, 532-546(2001).

    [22] Xingliang LI, Chunhui NIU, Muyan MA et al. Research on the thermal damage of HgCdTe infrared detector under laser irradiation of 10.6 μm wavelength. Infrared Technology, 38, 6-9(2016).

    [23] M REDDY, J M PETERSON, T VANG et al. Molecular beam epitaxy growth of HgCdTe on large-area Si and CdZnTe substrates. Journal of Electronic Materials, 40, 1706-1716(2011).

    [24] A D HOLLAND, J BELETIC, B STARR et al. RVS large format arrays for astronomy, 9915, 99152X(2016).

    [25] M A KINCH, F AQARIDEN, D CHANDRA et al. Minority carrier lifetime in p-HgCdTe. Journal of Electronic Materials, 34, 880-884(2005).

    [26] O GRAVRAND, J ROTHMAN, B DELACOURT et al. Shockley–read–hall lifetime study and implication in HgCdTe photodiodes for IR detection. Journal of Electronic Materials, 47, 5680-5690(2018).

    [27] D LEE, P DREISKE, J ELLSWORTH et al. Performance of MWIR and LWIR fully-depleted HgCdTe FPAs, 189-190(2019).

    [28] J W BELETIC, R BLANK, D GULBRANSEN et al. Teledyne imaging sensors: infrared imaging technologies for astronomy and civil space, 7021, 70210H(2008).

    [29] W LEI, J ANTOSZEWSKI, O. FARAONE. Progress, challenges, and opportunities for HgCdTe infrared materials and detectors. Applied Physics Reviews, 2, 041303(2015).

    [30] Wei LU, Ning LI, Honglou ZHEN et al. A new family in infrared optoelectronics--quantum well infrared detectors. Science in China: Physics, 39, 336-343(2009).

    [31] Tingting WEI. Research status and prospects of quantum well infrared detectors. Science & Technology Information, 1, 475-477(2009).

    [32] J A ROBO, E COSTARD, J P TRUFFER et al. QWIP focal plane arrays performances from MWIR up to VLWIR, 7298, 72980F(2009).

    [33] V GUERIAUX, A BERURIER, O HUET et al. Quantum well infrared photodetectors: present and future. Optical Engineering, 50, 1013(2011).

    [34] A ROGALSKI. Assessment of HgCdTe photodiodes and quantum well infrared photoconductors for long wavelength focal plane arrays, 40, 279-294(1999).

    [35] L GENDRON, C KOENIGUER, X MARCADET et al. Quantum cascade detectors. Infrared Physics & Technology, 47, 175-181(2005).

    [36] N ZEIRI, N SFINA, N S ABDIBEN et al. Intersubband transitions in quantum well mid-infrared photodetectors. Infrared Physics & Technology, 60, 137-144(2013).

    [37] A BILLAHA, M K DAS. Influence of doping on the performance of GaAs/AlGaAs QWIP for long wavelength applications. Opto-Electronics Review, 24, 25-33(2016).

    [38] M A KHAN, A A PAVEL, N ISLAM et al. Intersubband transition in asymmetric quantum well infrared photodetector. IEEE Transactions on Nanotechnology, 12, 521-523(2013).

    [39] C W CHEAH, G KARUNASIRI, L S TAN. Analysis of AlGaAs/GaAs/InGaAs n-type step multiple quantum wells for the optimization of normal incident absorption. Semiconductor Science & Technology, 17, 1028(2002).

    [40] M A BILLAHA, M K DAS. Performance analysis of AlGaAs/GaAs/InGaAs-based asymmetric long-wavelength QWIP. Applied Physics A: Materials Science & Processing, 125, 457(2019).

    [41] Y SHI. Development and application of large format QWIP FPA, 7383, 738303(2009).

    [42] Yanli SHI. Development status of quantum well infrared photodetectors in the euramerican countries. Infrared Technology, 27, 274-278(2005).

    [43] Gehong ZENG, Yanli SHI, Jisheng ZHUANG. Principles, status and prospect of type II superlattice infrared detectors. Infrared Technology, 33, 311-314(2011).

    [44] L ESAKI, R TSU. Superlattice and negative differential conductivity in semiconductors. IBM Journal of Research and Development, 14, 61-65(1970).

    [45] Guowei WANG, Yingqiang XU, Zhichuan NIU. Development of high-performance novel low-dimensional structure antimonide infrared FPAs: challenges and solutions. Scientia Sinica:Physica, 44, 368-389(2014).

    [46] Feng GONG, Wenquan MA, Zhen TAN et al. Research on Sb-based type- II superlattice MW infrared focus plane array. Laser & Infrared, 44, 258-260(2014).

    [47] J BAJAJ, G SULLIVAN, D LEE et al. Comparison of type-II superlattice and HgCdTe infrared detector technologies, 6542, 65420B(2007).

    [48] Shengda LIU, Dan FANG, Xuan FANG et al. Advances in epitaxial growth, structural and optical properties of antimonide-based type-Ⅱ superlattices. Chinese Journal of Luminescence, 42, 165-186(2021).

    [49] Yi ZHOU, Jianxin CHEN, Qingqing XU et al. Long wavelength infrared detector based on type-II InAs/GaSb superlattice. Journal of Infrared & Millimeter Waves, 32, 210-213(2013).

    [50] B V OLSON, E A SHANER, J K KIM et al. Identification of dominant recombination mechanisms in narrow-bandgap InAs/InAsSb type-II superlattices and InAsSb alloys. Applied Physics Letters, 103, 052106(2013).

    [51] T MANYK, K MICHALCZEWSKI, K MURAWSKI et al. InAs/InAsSb strain-balanced superlattices for longwave infrared detectors. Sensors, 19, 1907(2019).

    [52] G ARIYAWANSA, C J REYNER, E H STEENBERGEN et al. InGaAs/InAsSb strained layer superlattices for mid-wave infrared detectors. Applied Physics Letters, 108, 022106(2016).

    [53] P DU, X FANG, H B ZHAO et al. Mid- and long-infrared emission properties of InxGa1-xAsySb1-y quaternary alloy with Type-II InAs/GaSb superlattice distribution. Journal of Alloys and Compounds, 847, 156390(2020).

    [54] A ROGALSKI, P M MARTYNIUK, M KOPYTKO. Type-II superlattice photodetectors versus HgCdTe photodiodes, 11151, 1115114(2019).

    [55] Y REIBEL, R TAALAT, A BRUNNER et al. Infrared SWAP detectors: pushing the limits, 9451, 945110(2015).

    [56] D H WU, A DEHZANGI, Y Y ZHANG et al. Demonstration of long wavelength infrared type-II InAs/InAs 1-x Sbx superlattices photodiodes on GaSb substrate grown by metalorganic chemical vapor deposition. Applied Physics Letters, 112, 241103(2018).

    [57] D WU, Q DURLIN, A DEHZANGI et al. High quantum efficiency mid-wavelength infrared type-II InAs/InAs1-xSbx superlattice photodiodes grown by metal-organic chemical vapor deposition. Applied Physics Letters, 114, 011104(2019).

    [58] Y AYTAC, B V OLSON, J K KIM et al. Evidence of a shockley-read-hall defect state independent of band-edge energy in InAs / In ( As, Sb ) type-II superlattices. Physical Review Applied, 5, 054016(2016).

    [59] A D PRINS, M K LEWIS, Z L BUSHELL et al. Evidence for a defect level above the conduction band edge of InAs/InAsSb type-II superlattices for applications in efficient infrared photodetectors. Applied Physics Letters, 106, 171111(2015).

    [60] D WU, J LI, A DEHZANGI et al. Mid-wavelength infrared high operating temperature pBn photodetectors based on type-II InAs/InAsSb superlattice. AIP Advances, 10, 025018(2020).

    [61] Y ZHANG, G DENG, D CHEN et al. High operating temperature pBn barrier mid-wavelength infrared photodetectors and focal plane array based on InAs/InAsSb strained layer superlattices. Optics Express, 28, 17611-17619(2020).

    [62] Yanqiu LV, Xing LU, Zhengxiong LU et al. Review of antimonide infrared detector development at home and abroad. Aero Weaponry, 27, 1-12(2020).

    [63] S D GUNAPALA, S V BANDARA, J K LIU et al. Quantum well infrared photodetector technology and applications. IEEE Journal of Selected Topics in Quantum Electronics, 20, 154-165(2014).

    [64] J PHILLIPS, K KAMATH, P BHATTACHARYA. Far-infrared photoconductivity in self-organized InAs quantum dots. Applied Physics Letters, 72, 2020-2022(1998).

    [65] Yanan JIA, Bo XU, Zhanguo WANG. Research progresses on quantum dot infrared photodetectors. Semiconductor Optoelectronics, 33, 314-320(2012).

    [66] A ROGALSKI, J ANTOSZEWSKI, L FARAONE. Third-generation infrared photodetector arrays. Journal of Applied Physics, 105, 091101(2009).

    [67] V RYZHII. The theory of quantum-dot infrared phototransistors. Semiconductor Science & Technology, 11, 759(1996).

    [68] S Y BAO, Y WANG, K LINA et al. A review of silicon-based wafer bonding processes, an approach to realize the monolithic integration of Si-CMOS and III–V-on-Si wafers. Journal of Semiconductors, 42, 023106(2021).

    [69] J E BOWERS, J T BOVINGTON, A Y LIU et al. A path to 300 mm hybrid silicon photonic integrated circuits, 1, 1-3(2014).

    [70] A REN, L M YUAN, H XU et al. Recent progress of III–V quantum dot infrared photodetectors on silicon. Journal of Materials Chemistry C, 46, 14441-14453(2019).

    [71] A ROGALSKI, P MARTYNIUK, M KOPYTKO. InAs/GaSb type-II superlattice infrared detectors: future prospect. Applied Physics Reviews, 4, 031304(2017).

    [72] L DI, R GUNTHER, B ROEL et al. Hybrid integrated platforms for silicon photonics. Materials, 3, 1782(2010).

    [73] H YOSHIKAWA, Y ARAKAWA, S IWAMOTO et al. InAs/GaAs quantum dot infrared photodetectors on on-axis Si (100) substrates. Electronics Letters, 54, 1395-1397(2018).

    [74] I GEORGE, F BECAGLI, H Y LIU et al. Dislocation filters in GaAs on Si. Semiconductor Science and Technology, 30, 114004(2015).

    [75] R BEANLAND, A M SÁNCHEZ, D CHILDS et al. Structural analysis of life tested 1.3 μm quantum dot lasers. Journal of Applied Physics, 103, 014913(2008).

    [76] A D STIFF-ROBERTS. Quantum-dot infrared photodetectors: a review. SPIE Reviews, 1, 031607(2009).

    [77] M PAWEL, G EPIMITHEAS, M JORICK et al. Thin-film quantum dot photodiode for monolithic infrared image sensors. Sensors, 17, 2867(2017).

    [78] S B HAFIZ, M SCIMECA, A SAHU et al. Colloidal quantum dots for thermal infrared sensing and imaging. Nano Convergence, 6, 1-22(2019).

    [80] K H YE, W ZHANG, M OEHME et al. Absorption coefficients of GeSn extracted from PIN photodetector response. Solid-State Electronics, 110, 71(2015).

    [81] S J SU, B W CHENG, C L XUE et al. GeSn p-i-n photodetector for all telecommunication bands detection. Optics Express, 19, 6400(2011).

    [82] R CHEN, H LIN, Y J HUO et al. Increased photoluminescence of strain-reduced, high-Sn composition Ge1-xSnx alloys grown by molecular beam epitaxy. Applied Physics Letter, 99, 181125(2011).

    [83] H LUAN, D R LIM, K K LEE et al. High-quality Ge epilayers on Si with low threading-dislocation densities. Applied Physics Letter, 75, 2909(1999).

    [84] Y ZHAO, N WANG, K YU et al. High performance silicon-based GeSn p–i–n photodetectors for short-wave infrared application. Chinese Physics B, 28, 128501(2019).

    [85] D LEONHARDT, S M HAN. Dislocation reduction in heteroepitaxial Ge on Si using SiO2lined etch pits and epitaxial lateral overgrowth. Applied Physics Letter, 99, 111911(2011).

    [86] W WEGSCHEIDER, J OLAJOS, U MENCZIGAR et al. Fabrication and properties of epitaxially stabilized Ge/α-Sn heterostructures on Ge(001). Journal of Crystal Growth, 123, 75(1992).

    [87] H TRAN, T PHAM, J MARGETIS et al. Si-Based GeSn Photodetectors toward Mid-Infrared Imaging Applications. ACS Photonics, 6, 2807-2815(2019).

    [88] D L ZHANG, Z LIU, D L ZHANG et al. Sn-guided defect-free GeSn lateral growth on Si by molecular beam epitaxy. Journal of Physical Chemistry C, 119, 17842-17847(2015).

    CLP Journals

    [1] WANG Jing-fei, CHEN Yan-guan. Study on the Influence of Test Environment on the Test Results of Sub-mK Infrared Detectors[J]. INFRARED, 2023, 44(12): 24

    Runze MA, Xiaoming ZHANG, Shuai FENG, Jun ZHENG, Yingqiang XU, Chuanbo LI. Research Status and Prospect of Infrared Photoelectric Detection Technology(Invited)[J]. Acta Photonica Sinica, 2021, 50(10): 1004006
    Download Citation