• Frontiers of Optoelectronics
  • Vol. 10, Issue 3, 323 (2017)
Vasily A. MATKIVSKY*, Alexander A. MOISEEV, Sergey Yu. KSENOFONTOV, Irina V. KASATKINA, Grigory V. GELIKONOV, Dmitry V. SHABANOV, Pavel A. SHILYAGIN, and Valentine M. GELIKONOV
Author Affiliations
  • Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950, Russia
  • show less
    DOI: 10.1007/s12200-017-0736-2 Cite this Article
    Vasily A. MATKIVSKY, Alexander A. MOISEEV, Sergey Yu. KSENOFONTOV, Irina V. KASATKINA, Grigory V. GELIKONOV, Dmitry V. SHABANOV, Pavel A. SHILYAGIN, Valentine M. GELIKONOV. Medium chromatic dispersion calculation and correction in spectral-domain optical coherence tomography[J]. Frontiers of Optoelectronics, 2017, 10(3): 323 Copy Citation Text show less
    References

    [1] Drexler W, Fujimoto J G. Optical Coherence Tomography Technology and Applications. Berlin: Springer, 2008, 1357

    [2] Puliafito C A, Hee M R, Schuman J S, Fujimoto J G. Optical Coherence Tomography of Ocular Diseases. Thorofare, NJ: Slack Inc., 1996, 376

    [3] Gupta V, Gupta A, Dogra M R. Atlas of Optical Coherence Tomography of Macular Diseases. Boca Raton: Taylor & Francis, 2004

    [4] Zaitsev V Y, Vitkin I A, Matveev L A, Gelikonov VM, Matveyev A L, Gelikonov G V. Recent trends in multimodal optical coherence tomography II. The correlation-stability approach in OCT elastography and methods for visualization of microcirculation. Radiophysics and Quantum Electronics, 2014, 57(3): 210-225

    [5] Loduca A L, Zhang C, Zelkha R, Shahidi M. Thickness mapping of retinal layers by spectral-domain optical coherence tomography. American Journal of Ophthalmology, 2010, 150(6): 849-855

    [6] Chiu S J, Li X T, Nicholas P, Toth C A, Izatt J A, Farsiu S. Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Optics Express, 2010, 18(18): 19413-19428

    [7] Fercher A F, Hitzenberger C K, Sticker M, Zawadzki R, Karamata B, Lasser T. Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique. Optics Communications, 2002, 204(1-6): 67-74

    [8] Lippok N, Coen S, Nielsen P, Vanholsbeeck F. Dispersion compensation in Fourier domain optical coherence tomography using the fractional Fourier transform. Optics Express, 2012, 20 (21): 23398-23413

    [9] hoi W, Baumann B, Swanson E A, Fujimoto J G. Extracting and compensating dispersion mismatch in ultrahigh-resolution Fourier domain OCT imaging of the retina. Optics Express, 2012, 20(23): 25357-25368

    [10] Wu X, Gao W. Dispersion analysis in micron resolution spectral domain optical coherence tomography. Journal of the Optical Society of America. B, Optical Physics, 2017, 34(1): 169-177

    [11] Lychagov V V, Ryabukho V P. Chromatic dispersion effects in ultra-low coherence interferometry. Quantum Electronics, 2015, 45 (6): 556-560

    [12] Yu X, Liu X, Chen S, Luo Y, Wang X, Liu L. High-resolution extended source optical coherence tomography. Optics Express, 2015, 23(20): 26399-26413

    [13] Xu D, Huang Y, Kang J U. Graphics processing unit-accelerated real-time compressive sensing spectral domain optical coherence tomography. In: Proceedings of SPIE. 2015, 93301B

    [14] Bian H, Gao W. Wavelet transform-based method of compensating dispersion for high resolution imaging in SDOCT. In: Proceedings of SPIE. 2014, 92360X

    [15] Pan L,Wang X, Li Z, Zhang X, Bu Y, Nan N, Chen Y,Wang X, Dai F. Depth-dependent dispersion compensation for full-depth OCT image. Optics Express, 2017, 25(9): 10345-10354

    [16] Wang B, Jiang Z, Hu Y, Wang Z.A segmental dispersion compensation method to improve axial resolution of specified layer in FD-OCT. In: Proceedings of SPIE, Optical Measurement Technology and Instrumentation. 2016, 101553L

    [17] Okano M, Okamoto R, Tanaka A, Ishida S, Nishizawa N, Takeuchi S. Dispersion cancellation in high-resolution two-photon interference. Physical Review A, 2013, 88(4): 043845

    [18] Shirai T. Modifications of intensity-interferometric spectral-domain optical coherence tomography with dispersion cancellation. Journal of Optics, 2015, 17(4): 045605

    [19] Photiou C, Bousi E, Zouvani I, Pitris C. Using speckle to measure tissue dispersion in optical coherence tomography. Biomedical Optics Express, 2017, 8(5): 2528-2535

    [20] Photiou C., Pitris C.Tissue dispersion measurement techniques using optical coherence tomography. In: Proceedings of SPIE, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXI. 2017, 100532W

    [21] Banaszek K, Radunsky A S, Walmsley I A. Blind dispersion compensation for optical coherence tomography. In: Proceedings of Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, San Francisco, California. 2004, CWJ6

    [22] Banaszek K, Radunsky A S, Walmsley I A. Blind dispersion compensation for optical coherence tomography. Optics Communications, 2007, 269(1): 152-155

    [23] Matkivsky V A, Moiseev A A, Gelikonov G V, Shabanov D V, Shilyagin P A, Gelikonov V M. Correction of aberrations in digital holography using the phase gradient autofocus technique. Laser Physics Letters, 2016, 13(3): 035601

    [24] Leitgeb R A, Wojtkowski M. Complex and coherence noise free Fourier domain optical coherence tomography. In: Drexler W, Fujimoto J G, eds. Optical Coherence Tomography: Technology and Applications. Berlin: Springer, 2008, 177-207

    [25] Gelikonov V M, Gelikonov G V, Kasatkina I V, Terpelov D A, Shilyagin P A. Coherent noise compensation in spectral-domain optical coherence tomography. Optics and Spectroscopy, 2009, 106 (6): 895-900

    [26] Fercher A F. Optical coherence tomography. Journal of Biomedical Optics, 1996, 1(2): 157-173

    [27] Welge W A, Barton J K. Expanding functionality of commercial optical coherence tomography systems by integrating a custom endoscope. PLoS One, 2015, 10(9): e0139396

    [28] Schott Optical glass datasheet (Electronic document) https:// refractiveindex.info/download/data/2015/schott-optical-glass-collection- datasheets-july-2015-us.pdf

    [29] Batovrin V K, Garmash I A, Gelikonov V M, Gelikonov G V, Lyubarskiǐ A V, Plyavenek A G, Safin S A, Semenov A T, Shidlovskiǐ V R, Shramenko M V, Yakubovich S D. Superluminescent diodes based on single-quantum-well (GaAl)As heterostructures. Quantum Electronics, 1996, 26(2): 109-114

    [30] Matveev L A, Zaitsev V Y, Gelikonov G V, Matveyev A L, Moiseev A A, Ksenofontov S Y, Gelikonov V M, Sirotkina M A, Gladkova N D, Demidov V, Vitkin A. Hybrid M-mode-like OCT imaging of three-dimensional microvasculature in vivo using reference-free processing of complex valued B-scans. Optics Letters, 2015, 40(7): 1472-1475

    Vasily A. MATKIVSKY, Alexander A. MOISEEV, Sergey Yu. KSENOFONTOV, Irina V. KASATKINA, Grigory V. GELIKONOV, Dmitry V. SHABANOV, Pavel A. SHILYAGIN, Valentine M. GELIKONOV. Medium chromatic dispersion calculation and correction in spectral-domain optical coherence tomography[J]. Frontiers of Optoelectronics, 2017, 10(3): 323
    Download Citation