• Photonics Research
  • Vol. 12, Issue 8, 1813 (2024)
Pengtao Luo1,2, Fengyi Chen1,2, Ruohui Wang1,2,*, and Xueguang Qiao1,2
Author Affiliations
  • 1School of Physics, Northwest University, Xi’an 710127, China
  • 2Engineering Research Center of Optical Fiber Well Logging Technology for Oil and Gas Resources, Universities of Shaanxi Province, Xi’an 710127, China
  • show less
    DOI: 10.1364/PRJ.519510 Cite this Article Set citation alerts
    Pengtao Luo, Fengyi Chen, Ruohui Wang, Xueguang Qiao, "Ultra-low loss Rayleigh scattering enhancement via light recycling in fiber cladding," Photonics Res. 12, 1813 (2024) Copy Citation Text show less
    References

    [1] I. Ashry, Y. Mao, B. Wang. A review of distributed fiber–optic sensing in the oil and gas industry. J. Lightwave Technol., 40, 1407-1431(2022).

    [2] X. Bao, L. Chen. Recent progress in distributed fiber optic sensors. Sensors, 12, 8601-8639(2012).

    [3] T. Lee, M. Beresna, A. Masoudi. Enhanced-backscattering and enhanced-backreflection fibers for distributed optical fiber sensors. J. Lightwave Technol., 41, 4051-4064(2023).

    [4] A. Yan, S. Huang, S. Li. Distributed optical fiber sensors with ultrafast laser enhanced Rayleigh backscattering profiles for real-time monitoring of solid oxide fuel cell operations. Sci. Rep., 7, 9360(2017).

    [5] B. Szczupak, J. Olszewski, M. Madry. The influence of germanium concentration in the fiber core on temperature sensitivity in Rayleigh scattering-based OFDR. IEEE Sens. J., 21, 20036-20044(2021).

    [6] P. Bulot, R. Bernard, M. Cieslikiewicz-Bouet. Performance study of a zirconia-doped fiber for distributed temperature sensing by OFDR at 800°C. Sensors, 21, 3788(2021).

    [7] X. Wang, R. Benedictus, R. M. Groves. Optimization of light scattering enhancement by gold nanoparticles in fused silica optical fiber. Opt. Express, 29, 19450-19464(2021).

    [8] A. Beisenova, A. Issatayeva, I. Iordachita. Distributed fiber optics 3D shape sensing by means of high scattering NP-doped fibers simultaneous spatial multiplexing. Opt. Express, 27, 22074-22087(2019).

    [9] V. Fuertes, N. Grégoire, P. Labranche. Engineering nanoparticle features to tune Rayleigh scattering in nanoparticles-doped optical fibers. Sci. Rep., 11, 9116(2021).

    [10] V. Fuertes, N. Grégoire, P. Labranche. Tunable Rayleigh scattering in low-loss SR-based nanoparticle-doped optical fibers: controlling nanoparticle features throughout preform and fiber fabrication. J. Alloys Compd., 940, 168928(2023).

    [11] F. Parent, S. Loranger, K. K. Mandal. Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers. Biomed. Opt. Express, 8, 2210-2221(2017).

    [12] C. Wang, Z. Li, X. Gui. Micro-cavity array with high accuracy for fully distributed optical fiber sensing. J. Lightwave Technol., 37, 927-932(2019).

    [13] F. Monet, S. Loranger, V. Lambin-Iezzi. The ROGUE: a novel, noise-generated random grating. Opt. Express, 27, 13895-13909(2019).

    [14] B. Xu, J. He, B. Du. Femtosecond laser point-by-point inscription of an ultra-weak fiber Bragg grating array for distributed high-temperature sensing. Opt. Express, 29, 32615-32626(2021).

    [15] M. Wang, K. Zhao, S. Huang. Reel-to-reel fabrication of in-fiber low-loss and high-temperature stable Rayleigh scattering centers for distributed sensing. IEEE Sens. J., 20, 11335-11341(2020).

    [16] B. Du, J. He, B. Xu. High-density weak in-fiber micro-cavity array for distributed high-temperature sensing with millimeter spatial resolution. J. Lightwave Technol., 40, 7447-7455(2022).

    [17] Y. Meng, C. Fu, L. Chen. Submillimeter-spatial-resolution φ-OFDR strain sensor using femtosecond laser induced permanent scatters. Opt. Lett., 47, 6289-6292(2022).

    [18] B. Redding, M. J. Murray, A. Donko. Low-noise distributed acoustic sensing using enhanced backscattering fiber with ultra-low-loss point reflectors. Opt. Express, 28, 14638-14647(2020).

    [19] P. S. Westbrook, T. Kremp, B. Zhu. Enhanced backscatter fibers for sensing in telecom networks. J. Lightwave Technol., 41, 1010-1016(2023).

    [20] Y. Liao, W. Pan, Y. Cui. Formation of in-volume nanogratings with sub-100-nm periods in glass by femtosecond laser irradiation. Opt. Lett., 40, 3623-3626(2015).

    [21] A. Martinez, M. Dubov, I. Khrushchev. Photoinduced modifications in fiber gratings inscribed directly by infrared femtosecond irradiation. IEEE Photonics Technol. Lett., 18, 2266-2268(2006).

    [22] N. Jovanovic, J. Thomas, R. J. Williams. Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers. Opt. Express, 17, 6082-6095(2009).

    [23] T. Qiu, S. Yang, A. Wang. Cross-axis Bragg gratings in few-mode fibers inscribed with a femtosecond laser point-by-point technique. Opt. Commun., 536, 129379(2023).

    [24] A. Reupert, I. Chiamenti, M. Chernysheva. Controllable light scattering on fiber Bragg gratings in multimode fibers: tailoring angular emission for advanced fiber-based light sources. ACS Photonics, 10, 2765-2773(2023).

    [25] A. Reupert, J. Schröder, L. Wondraczek. Radiation from side-emitting optical fibers and fiber fabrics: radiometric model and experimental validation. Adv. Photonics Res., 3, 2100104(2022).

    [26] K. Itoh, W. Watanabe, S. Nolte. Ultrafast processes for bulk modification of transparent materials. MRS Bull., 31, 620-625(2006).

    [27] P. Luo, F. Chen, R. Wang. Femtosecond laser inscription of eccentric waveguide in optical fiber for rayleigh scattering enhancement. CLEO: Fundamental Science, JW2A-26(2023).

    [28] Y. Geng, X. Zhu, J. Lu. Femtosecond laser written ultra-weak Fabry-Perot array for distributed absolute temperature profile sensing with high spatial resolution. Opt. Express, 30, 47038-47047(2022).

    [29] E. Bricchi, P. G. Kazansky. Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass. Appl. Phys. Lett., 88, 11111(2006).

    [30] Q. Xie, M. Cavillon, B. Poumellec. Upper temperature limit for nanograting survival in oxide glasses. Appl. Opt., 62, 6794-6801(2023).

    Pengtao Luo, Fengyi Chen, Ruohui Wang, Xueguang Qiao, "Ultra-low loss Rayleigh scattering enhancement via light recycling in fiber cladding," Photonics Res. 12, 1813 (2024)
    Download Citation