• Journal of the Chinese Ceramic Society
  • Vol. 52, Issue 4, 1460 (2024)
WANG Zhentao, LI Da, ZHAO Weichen, LIU Jinnan..., XU Diming and ZHOU Di*|Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.14062/j.issn.0454-5648.20230954 Cite this Article
    WANG Zhentao, LI Da, ZHAO Weichen, LIU Jinnan, XU Diming, ZHOU Di. Research Progress on NaNbO3-Based Ceramics for Capacitive Energy Storage[J]. Journal of the Chinese Ceramic Society, 2024, 52(4): 1460 Copy Citation Text show less
    References

    [1] TAN D Q. Review of polymer-based nanodielectric exploration and film scale-up for advanced capacitors[J]. Adv Funct Materials, 2020, 30(18): 1808567.

    [2] YANG Z T, DU H L, JIN L, et al. High-performance lead-free bulk ceramics for electrical energy storage applications: Design strategies and challenges[J]. J Mater Chem A, 2021, 9(34): 18026-18085.

    [3] TIAN Tingfang, CHEN Feilong, ZHANG Liangbin, et al. Adv Ceram, 2023, 44(3): 153-172.

    [4] DANG Z M, ZHENG M S, ZHA J W. 1D/2D carbon nanomaterial-polymer dielectric composites with high permittivity for power energy storage applications[J]. Small, 2016, 12(13): 1688-1701.

    [5] YANG Minzheng, JIANG Jianyong, SHEN Yang. J Chin Ceram Soc, 2021, 49(7): 1249-1262.

    [6] YANG L T, KONG X, LI F, et al. Perovskite lead-free dielectrics for energy storage applications[J]. Prog Mater Sci, 2019, 102: 72-108.

    [7] YANG D, GAO J, SHU L, et al. Lead-free antiferroelectric niobates AgNbO3 and NaNbO3 for energy storage applications[J]. J Mater Chem A, 2020, 8(45): 23724-23737.

    [8] VOUSDEN P. The structure of ferroelectric sodium niobate at room temperature[J]. Acta Cryst, 1951, 4(6): 545-551.

    [9] CROSS L E, NICHOLSON B J. LV. The optical and electrical properties of single crystals of sodium niobate[J]. Lond Edinb Dublin Philos Mag J Sci, 1955, 46(376): 453-466.

    [10] MEGAW H D. The seven phases of sodium niobate[J]. Ferroelectrics, 1974, 7(1): 87-89.

    [11] MISHRA S K, CHOUDHURY N, CHAPLOT S L, et al. Competing antiferroelectric and ferroelectric interactions in NaNbO3: Neutron diffraction and theoretical studies[J]. Phys Rev B, 2007, 76(2): 024110.

    [12] KANIA A, KWAPULINSKI J. Ag1-xNaxNbO3(ANN) solid solutions: From disordered antiferroelectric AgNbO3 to normal antiferroelectric NaNbO3[J]. J Phys: Condens Matter, 1999, 11(45): 8933-8946.

    [13] RAEVSKII I P, REZNICHENKO L A, SMOTRAKOV V G, et al. A new phase transition in sodium niobate[J]. Tech Phys Lett, 2000, 26(8): 744-746.

    [14] REZNICHENKO L A, SHILKINA L A, GAGARINA E S, et al. Structural instabilities, incommensurate modulations and P and Q phases in sodium niobate in the temperature range 300-500 K[J]. Crystallogr Rep, 2003, 48(3): 448-456.

    [15] ZHANG M H, FULANOVI? L, EGERT S, et al. Electric-field-induced antiferroelectric to ferroelectric phase transition in polycrystalline NaNbO3[J]. Acta Mater, 2020, 200: 127-135.

    [16] ULINZHEEV A V, LEIDERMAN A V, SMOTRAKOV V G, et al. Phase transitions induced in NaNbO3 crystals by varying the direction of an external electric field[J]. Phys Solid State, 1997, 39(6): 972-974.

    [17] SCHWARZKOPF J, SCHMIDBAUER M, REMMELE T, et al. Strain-induced phase transitions in epitaxial NaNbO3 thin films grown by metal-organic chemical vapour deposition[J]. J Appl Cryst, 2012, 45(5): 1015-1023.

    [18] SHIRATORI Y, MAGREZ A, DORNSEIFFER J, et al. Polymorphism in micro-, submicro-, and nanocrystalline NaNbO3[J]. J Phys Chem B, 2005, 109(43): 20122-20130.

    [19] LI W, XIA X, ZENG J T, et al. Significant differences in NaNbO3 ceramics fabricated using Nb2O5 precursors with various crystal structures[J]. Ceram Int, 2020, 46(3): 3759-3766.

    [20] ZHANG M H, FULANOVI? L, ZHAO C H, et al. Review on field-induced phase transitions in lead-free NaNbO3-based antiferroelectric perovskite oxides for energy storage[J]. J Materiomics, 2023, 9(1): 1-18.

    [21] ZHANG M H, HADAEGHI N, EGERT S, et al. Design of lead-free antiferroelectric (1-x)NaNbO3-xSrSnO3 compositions guided by first-principles calculations[J]. Chem Mater, 2021, 33(1): 266-274.

    [22] LI W, XIA X, ZENG J T, et al. 1/6 type diffraction patterns and double P-E hysteresis loops in Bi(Mg2/3Nb1/3)O3 modified NaNbO3 ceramics[J]. J Phys D: Appl Phys, 2020, 53(30): 305302.

    [23] LI W, XIA X, ZENG J T, et al. 1/6 type diffraction patterns and double P-E hysteresis loops in Bi(Mg2/3Nb1/3)O3 modified NaNbO3 ceramics[J]. J Phys D: Appl Phys, 2020, 53(30): 305302.

    [24] PEEL M D, THOMPSON S P, DAOUD-ALADINE A, et al. New twists on the perovskite theme: Crystal structures of the elusive phases R and S of NaNbO3[J]. Inorg Chem, 2012, 51(12): 6876-6889.

    [25] MISHRA S K, MITTAL R, POMJAKUSHIN V Y, et al. Phase stability and structural temperature dependence in sodium niobate: A high-resolution powder neutron diffraction study[J]. Phys Rev B, 2011, 83(13): 134105.

    [26] QI H, ZUO R Z, XIE A W, et al. Ultrahigh energy-storage density in NaNbO3-based lead-free relaxor antiferroelectric ceramics with nanoscale domains[J]. Adv Funct Mater, 2019, 29(35): 1903877.

    [27] XIE A W, FU J, ZUO R Z, et al. NaNbO3-CaTiO3 lead-free relaxor antiferroelectric ceramics featuring giant energy density, high energy efficiency and power density[J]. Chem Eng J, 2022, 429: 132534.

    [28] BIAN J J, OTONICAR M, SPREITZER M, et al. Structural evolution, dielectric and energy storage properties of Na(Nb1?xTax)O3 ceramics prepared by spark plasma sintering[J]. J Eur Ceram Soc, 2019, 39(7): 2339-2347.

    [29] YANG W W, ZENG H R, YAN F, et al. Microstructure-driven excellent energy storage NaNbO3-based lead-free ceramics[J]. Ceram Int, 2022, 48(24): 37476-37482.

    [30] WANG J B, FAN H Q, WANG M Q, et al. Significantly enhanced energy storage performance in Sm-doped 0.88NaNbO3-0.12Sr0.7Bi0.2TiO3 lead-free ceramics[J]. Ceram Int, 2021, 47(13): 17964-17970.

    [31] FAN Y Z, ZHOU Z Y, LIANG R H, et al. Designing novel lead-free NaNbO3-based ceramic with superior comprehensive energy storage and discharge properties for dielectric capacitor applications via relaxor strategy[J]. J Eur Ceram Soc, 2019, 39(15): 4770-4777.

    [32] XIE A W, QI H, ZUO R Z. Achieving remarkable amplification of energy-storage density in two-step sintered NaNbO3-SrTiO3 antiferroelectric capacitors through dual adjustment of local heterogeneity and grain scale[J]. ACS Appl Mater Interfaces, 2020, 12(17): 19467-19475.

    [33] WANG T, WANG Y H, YANG H B, et al. Structure, dielectric properties of low-temperature-sintering BaTiO3-based glass-ceramics for energy storage[J]. J Adv Dielect, 2018, 8(6): 1850041.

    [34] TIAN A, ZUO R Z, QI H, et al. Large energy-storage density in transition-metal oxide modified NaNbO3-Bi(Mg0.5Ti0.5)O3 lead-free ceramics through regulating the antiferroelectric phase structure[J]. J Mater Chem A, 2020, 8(17): 8352-8359.

    [35] LUO G G, ZHUANG D Y, YANG K H, et al. Enhanced comprehensive energy storage properties in NaNbO3-based relaxor antiferroelectric via MnO2 modification[J]. J Mater Sci: Mater Electron, 2023, 34(18): 1444.

    [36] YANG L T, KONG X, CHENG Z X, et al. Enhanced energy density and electric cycling reliability via MnO2 modification in sodium niobate-based relaxor dielectric capacitors[J]. J Mater Res, 2021, 36(5): 1214-1222.

    [37] ZHANG M H, DING H, EGERT S, et al. Tailoring high-energystorage NaNbO3-based materials from antiferroelectric to relaxor states[J]. Nat Commun, 2023, 14: 1525.

    [38] EMMANUEL M. Modified Sodium niobate-based 0.76(NaNbO3)-0.24(Sr0.55La0.3TiO3) ceramics for energy storage[J]. Mater Chem Phys, 2023, 305: 127983.

    [39] CHEN J, QI H, ZUO R Z. Realizing stable relaxor antiferroelectric and superior energy storage properties in (Na1-x/2Lax/2)(Nb1-xTix)O3 lead-free ceramics through A/B-site complex substitution[J]. ACS Appl Mater Interfaces, 2020, 12(29): 32871-32879.

    [40] ZHOU M X, LIANG R H, ZHOU Z Y, et al. Novel sodium niobate-based lead-free ceramics as new environment-friendly energy storage materials with high energy density, high power density, and excellent stability[J]. ACS Sustainable Chem Eng, 2018, 6(10): 12755-12765.

    [41] WANG X J, WANG X Z, HUAN Y, et al. A combined optimization strategy for improvement of comprehensive energy storage performance in sodium niobate-based antiferroelectric ceramics[J]. ACS Appl Mater Interfaces, 2022, 14(7): 9330-9339.

    [42] ZHU L F, YAN Y K, LENG H Y, et al. Energy-storage performance of NaNbO3 based multilayered capacitors[J]. J Mater Chem C, 2021, 9(25): 7950-7957.

    [43] PAN Z B, LIU B H, ZHAI J W, et al. NaNbO3 two-dimensional platelets induced highly energy storage density in trilayered architecture composites[J]. Nano Energy, 2017, 40: 587-595.

    [44] PAN Z B, YAO L M, GE G L, et al. High-performance capacitors based on NaNbO3 nanowires/poly(vinylidene fluoride) nanocomposites[J]. J Mater Chem A, 2018, 6(30): 14614-14622.

    [45] PAN Z B, DING Q L, YAO L M, et al. Simultaneously enhanced discharge energy density and efficiency in nanocomposite film capacitors utilizing two-dimensional NaNbO3@Al2O3 platelets[J]. Nanoscale, 2019, 11(21): 10546-10554.

    [46] ZHOU M X, LIANG R H, ZHOU Z Y, et al. Superior energy storage properties and excellent stability of novel NaNbO3-based lead-free ceramics with A-site vacancy obtained via a Bi2O3 substitution strategy[J]. J Mater Chem A, 2018, 6(37): 17896-17904.

    [47] EMMANUEL M, HAO H, LIU H X, et al. Significantly enhanced energy storage density of NNT ceramics using aliovalent Dy3+ dopant[J]. ACS Sustainable Chem Eng, 2021, 9(17): 5849-5859.

    [48] FU D S, ARIOKA T, TANIGUCHI H, et al. Ferroelectricity and electromechanical coupling in (1-x)AgNbO3-xNaNbO3 solid solutions[J]. Appl Phys Lett, 2011, 99(1): 012904.

    [49] LI D, ZHOU D, WANG D, et al. Improved energy storage properties achieved in (K, Na)NbO3-based relaxor ferroelectric ceramics via a combinatorial optimization strategy[J]. Adv Funct Mater, 2022, 32(15): 2111776.

    [50] YANG L T, KONG X, CHENG Z X, et al. Enhanced energy storage performance of sodium niobate-based relaxor dielectrics by a ramp-to-spike sintering profile[J]. ACS Appl Mater Interfaces, 2020, 12(29): 32834-32841.

    [51] JIANG J, MENG X J, LI L, et al. Enhanced energy storage properties of lead-free NaNbO3-based ceramics via A/B-site substitution[J]. Chem Eng J, 2021, 422: 130130.

    [52] LUO G Q, LI A, ZHANG Y, et al. Improvement of energy storage properties of NaNbO3-based ceramics through the cooperation of relaxation and oxygen vacancy defects[J]. Ceram Int, 2023, 49(1): 801-807.

    [53] YE J M, WANG G S, CHEN X F, et al. Effect of rare-earth doping on the dielectric property and polarization behavior of antiferroelectric sodium niobate-based ceramics[J]. J Materiomics, 2021, 7(2): 339-346.

    [54] MENG X J, YANG Z Y, YUAN Y, et al. Superior energy-storage performances achieved in NaNbO3-based antiferroelectric ceramics by phase-structure and relaxation regulation[J]. Chem Eng J, 2023, 477: 147097.

    [55] CHENG X X, CHEN X M, FAN P Y. Excellent energy storage performance in NaNbO3-based relaxor antiferroeic ceramics undera low electric field[J]. J Electroceram, 2022, 48(4): 198-206.

    [56] YANG L T, KONG X, LI Q, et al. Excellent energy storage properties achieved in sodium niobate-based relaxor ceramics through doping tantalum[J]. ACS Appl Mater Interfaces, 2022, 14(28): 32218-32226.

    [57] QIAO Z L, LI T Y, QI H, et al. Excellent energy storage properties in NaNbO3-based lead-free ceramics by modulating antiferrodistortive of P phase[J]. J Alloys Compd, 2022, 898: 162934.

    [58] MITRA S, KULKARNI A R, PRAKASH O. Diffuse phase transition and electrical properties of lead-free piezoelectric (LixNa1-x)NbO3 (0.04≤x≤0.20) ceramics near morphotropic phase boundary[J]. J Appl Phys, 2013, 114(6): 064106.

    [59] SUN H L, ZHENG Q J, WAN Y, et al. Microstructure, electrical properties, and electric field-induced phase transitions in NaNbO3-LiTaO3 lead-free ceramics[J]. Phys Status Solidi A, 2014, 211(4): 869-876.

    [60] SHIMIZU H, GUO H Z, REYES-LILLO S E, et al. Lead-free antiferroelectric: xCaZrO3-(1?x)NaNbO3 system (0≤x≤0.10)[J]. Dalton Trans, 2015, 44(23): 10763-10772.

    [61] GUO H Z, SHIMIZU H, MIZUNO Y, et al. Strategy for stabilization of the antiferroelectric phase (Pbma) over the metastable ferroelectric phase (P21ma) to establish double loop hysteresis in lead-free (1-x)NaNbO3-xSrZrO3 solid solution[J]. J Appl Phys, 2015, 117(21): 214103.

    [62] GAO L S, GUO H Z, ZHANG S J, et al. A perovskite lead-free antiferroelectric xCaHfO3-(1-x) NaNbO3 with induced double hysteresis loops at room temperature[J]. J Appl Phys, 2016, 120(20): 204102.

    [63] LIU Z Y, LU J S, MAO Y Q, et al. Energy storage properties of NaNbO3-CaZrO3 ceramics with coexistence of ferroelectric and antiferroelectric phases[J]. J Eur Ceram Soc, 2018, 38(15): 4939-4945.

    [64] QI H, LI W C, WANG L, et al. Large (anti)ferrodistortive NaNbO3-based lead-free relaxors: Polar nanoregions embedded in ordered oxygen octahedral tilt matrix[J]. Mater Today, 2022, 60: 91-97.

    [65] LIU J K, LI P, LI C Y, et al. Synergy of a stabilized antiferroelectric phase and domain engineering boosting the energy storage performance of NaNbO3-based relaxor antiferroelectric ceramics[J]. ACS Appl Mater Interfaces, 2022, 14(15): 17662-17673.

    [66] ZUO J N, XIE A W, LIU J, et al. Significantly enhanced energy-storage properties in NaNbO3-based relaxor ferroelectric ceramics via introducing a wide band-gap linear dielectric[J]. Ceram Int, 2024, 50(4): 6332-6339.

    [67] LIANG C, WANG C Y, ZHAO H Y, et al. Significantly improved energy-storage performance of NaNbO3 lead-free ceramics with Ca0.7Bi0.2TiO3 addition[J]. J Alloys Compd, 2023, 961: 170962.

    [68] LI H H, PAN Z B, CHEN X Q, et al. Stable relaxor ferroelectric phase of NaNbO3-based ceramic with superb energy storage performances[J]. Mater Today Phys, 2023, 38: 101208.

    [69] DONG Q P, NONG P, PAN Y, et al. Energy storage performance of NaNbO3 lead-free dielectric ceramics by doping Sr(Mg1/3Sb2/3)O3[J]. J Mater Chem C, 2023, 11(38): 13120-13128.

    [70] DONG Q P, DONG X Y, PAN Y, et al. 0.74NaNbO3-0.26Sr(Mg1/3Nb2/3)O3 lead-free dielectric ceramics with high energy storage properties[J]. Ceram Int, 2023, 49(5): 8081-8087.

    [71] PAN T Z, ZHANG J, CHE D X, et al. Improved capacitive energy storage in sodium niobate-based relaxor antiferroelectric ceramics[J]. Appl Phys Lett, 2023, 122(7): 072902.

    [72] WEI T, LIU K, FAN P Y, et al. Novel NaNbO3-Sr0.7Bi0·2TiO3 lead-free dielectric ceramics with excellent energy storage properties[J]. Ceram Int, 2021, 47(3): 3713-3719.

    [73] LI C W, XIAO Y M, FU T Y, et al. High capacitive performance achieved in NaNbO3-based ceramics via grain refinement and relaxation enhancement[J]. Energy Technol, 2022, 10(2): 2100777.

    [74] LIU G F, CHEN L, YU H F, et al. High energy-storage performance in multiple roles modified NaNbO3-Ba(Fe0.5Nb0.5)O3 lead-free relaxors[J]. Chem Eng J, 2023, 474: 145705.

    [75] YANG Z T, DU H L, JIN L, et al. A new family of sodium niobate-based dielectrics for electrical energy storage applications[J]. J Eur Ceram Soc, 2019, 39(9): 2899-2907.

    [76] ZHANG L, PU Y P, CHEN M, et al. Novel (1-x)NaNbO3-xBi2/3HfO3 based, lead-free compositions with stable antiferroelectric phase and high energy density and switching field[J]. Chem Eng J, 2023, 457: 141376.

    [77] YANG Z T, DU H L, JIN L, et al. Realizing high comprehensive energy storage performance in lead-free bulk ceramics via designing an unmatched temperature range[J]. J Mater Chem A, 2019, 7(48): 27256-27266.

    [78] XIE A W, ZUO R Z, QIAO Z L, et al. NaNbO3-(Bi0.5Li0.5)TiO3 lead-free relaxor ferroelectric capacitors with superior energy-storage performances via multiple synergistic design[J]. Adv Energy Mater, 2021, 11(28): 2101378.

    [79] TIAN J J, CAO Y C, XU K, et al. High energy storage properties of NaNbO3-based relaxor antiferroelectric ceramics for capacitor applications[J]. Mater Res Bull, 2024, 169: 112550.

    [80] XIE A W, FU J, ZUO R Z. Achieving stable relaxor antiferroelectric P phase in NaNbO3-based lead-free ceramics for energy-storage applications[J]. J Materiomics, 2022, 8(3): 618-626.

    [81] FENG Y, ZHEN Y H, JIANG X L, et al. Optimized energy storage performance in NaNbO3-based ceramics via composition modification and micro-structure control[J]. Ceram Int, 2023, 49(9): 14135-14144.

    [82] QI H, ZUO R Z, XIE A W, et al. Excellent energy-storage properties of NaNbO3-based lead-free antiferroelectric orthorhombic P-phase (Pbma) ceramics with repeatable double polarization-field loops[J]. J Eur Ceram Soc, 2019, 39(13): 3703-3709.

    [83] NONG P, ZENG D F, PAN Y, et al. Simultaneous enhancement of energy storage performance and thermal stability of NaNbO3-based ceramics via multi-scale modulation[J]. J Materiomics, 2023, https://doi.org/10.1016/j.jmat.2023.09.004.

    [84] YE J M, WANG G S, ZHOU M X, et al. Excellent comprehensive energy storage properties of novel lead-free NaNbO3-based ceramics for dielectric capacitor applications[J]. J Mater Chem C, 2019, 7(19): 5639-5645.

    [85] SHI J P, CHEN X L, LI X, et al. Realizing ultrahigh recoverable energy density and superior charge-discharge performance in NaNbO3-based lead-free ceramics via a local random field strategy[J]. J Mater Chem C, 2020, 8(11): 3784-3794.

    [86] PANG F H, CHEN X L, SUN C C, et al. Ultrahigh energy storage characteristics of sodium niobate-based ceramics by introducing a local random field[J]. ACS Sustainable Chem Eng, 2020, 8(39): 14985-14995.

    [87] LAI D Y, YAO Z H, YOU W, et al. Modulating the energy storage performance of NaNbO3-based lead-free ceramics for pulsed power capacitors[J]. Ceram Int, 2020, 46(9): 13511-13516.

    [88] DONG X Y, LI X, CHEN X L, et al. High energy storage and ultrafast discharge in NaNbO3-based lead-free dielectric capacitors via a relaxor strategy[J]. Ceram Int, 2021, 47(3): 3079-3088.

    [89] BI W J, LI L M, TIAN G, et al. Comprehensive energy-storage performance enhancement in relaxor anti-ferroelectrics via strengthening local polarization[J]. Chem Eng J, 2023, 478: 147383.

    [90] CHEN H Y, DONG X Y, WANG X, et al. Energy storage properties in Bi(Mg1/2Sb2/3)O3-doped NaNbO3 lead-free ceramics[J]. Ceram Int, 2022, 48(6): 7723-7729.

    [91] PAN Y, WANG X, DONG Q P, et al. Enhanced energy storage properties of Bi(Ni2/3Nb1/6Ta1/6)O3-NaNbO3 solid solution lead-free ceramics[J]. Ceram Int, 2022, 48(18): 26466-26475.

    [92] WANG X, DONG Q P, PAN Y, et al. Enhanced energy storage performances of Bi(Ni1/2Sb2/3)O3 added NaNbO3 relaxor ferroelectric ceramics[J]. Ceram Int, 2022, 48(10): 13862-13868.

    [93] QU N, DU H L, HAO X H. A new strategy to realize high comprehensive energy storage properties in lead-free bulk ceramics[J]. J Mater Chem C, 2019, 7(26): 7993-8002.

    [94] SHI J P, CHEN X L, SUN C C, et al. Superior thermal and frequency stability and decent fatigue endurance of high energy storage properties in NaNbO3-based lead-free ceramics[J]. Ceram Int, 2020, 46(16): 25731-25737.

    [95] SHI R K, PU Y P, WANG W, et al. A novel lead-free NaNbO3-Bi(Zn0.5Ti0.5)O3 ceramics system for energy storage application with excellent stability[J]. J Alloys Compd, 2020, 815: 152356.

    [96] ZHANG S Y, LI W H, ZHANG Y S, et al. Large energy density and high efficiency achieved simultaneously in Bi(Mg0.5Hf0.5)O3-modified NaNbO3 ceramics[J]. Results Phys, 2023, 44: 106194.

    [97] CHEN H Y, CHEN X L, SHI J P, et al. Achieving ultrahigh energy storage density in NaNbO3-Bi(Ni0.5Zr0.5)O3 solid solution by enhancing the breakdown electric field[J]. Ceram Int, 2020, 46(18): 28407-28413.

    [98] MA J Q, LIN Y, YANG H B, et al. Achieved high energy storage property and power density in NaNbO3-Bi(Sn0.5Ni0.5)O3 ceramics[J]. J Alloys Compd, 2021, 868: 159206.

    [99] PANG F H, CHEN X L, SHI J P, et al. Bi(Mg0.5Sn0.5)O3-doped NaNbO3 lead-free ceramics achieve excellent energy-storage and charge/discharge performances[J]. ACS Sustainable Chem Eng, 2021, 9(13): 4863-4871.

    [100] DONG X Y, LI X, CHEN X L, et al. High energy storage density and power density achieved simultaneously in NaNbO3-based lead-free ceramics via antiferroelectricity enhancement[J]. J Materiomics, 2021, 7(3): 629-639.

    [101] DONG X Y, LI X, CHEN H Y, et al. Realizing enhanced energy storage and hardness performances in 0.90NaNbO3? 0.10Bi(Zn0.5Sn0.5)O3 ceramics[J]. J Adv Ceram, 2022, 11(5): 729-741.

    [102] TIAN H, CAO Y C, TIAN J J, et al. High energy storage performance in Bi(Mg0.5Hf0.5)O3 modified NaNbO3-based ceramics[J]. J Mater Sci Mater Electron, 2023, 34(15): 1203.

    [103] LIANG C, WANG C Y, ZHAO H Y, et al. Enhanced energy storage performance of NaNbO3-based ceramics via band and domain engineering[J]. Ceram Int, 2023, 49(24): 40326-40335.

    [104] WANG J T, NIE X R, PENG Z H, et al. Ultra-fast charge-discharge and high energy storage density realized in NaNbO3-La(Mn0.5Ni0.5)O3 ceramics[J]. Ceram Int, 2021, 47(20): 28493-28499.

    [105] BI W J, LI L M, SUN J W, et al. Synthesis, analysis and characterizations to enhance energy storage performances in (1-x)NaNbO3-xBi(Fe0.5Sc0.5)O3 ceramics[J]. Mater Sci Eng B, 2024, 299: 117033.

    [106] EMMANUEL M, HAO H, LIU H X, et al. Enthralling storage properties of (1-x)La0.03Na0.91NbO3-xBi(Li0.5Nb0.5)O3 lead-free ceramics: High energy storage applications[J]. J Phys Chem C, 2020, 124(40): 21993-22002.

    [107] JIANG J, MENG X J, LI L, et al. Ultrahigh energy storage density in lead-free relaxor antiferroelectric ceramics via domain engineering[J]. Energy Storage Mater, 2021, 43: 383-390.

    [108] JIANG J, LI X J, LI L, et al. Novel lead-free NaNbO3-based relaxor antiferroelectric ceramics with ultrahigh energy storage density and high efficiency[J]. J Materiomics, 2022, 8(2): 295-301.

    [109] MA J J, ZHANG J, GUO J, et al. Achieving ultrahigh energy storage density in lead-free sodium niobate-based ceramics by modulating the antiferroelectric phase[J]. Chem Mater, 2022, 34(16): 7313-7322.

    [110] MA J J, ZHANG D H, YING F, et al. Ultrahigh energy storage density and high efficiency in lead-free (Bi0.9Na0.1)(Fe0.8Ti0.2)O3-modified NaNbO3 ceramics via stabilizing the antiferroelectric phase and enhancing relaxor behavior[J]. ACS Appl Mater Interfaces, 2022, 14(17): 19704-19713.

    [111] LIU C J, YANG H B, HU R R, et al. NaNbO3-(Bi0.5La0.5)(Mg2/3Ta1/3)O3 lead-free ceramics achieve ultrafast discharge rate and excellent energy storage performance[J]. J Mater Sci Mater Electron, 2023, 34(7): 668.

    [112] YANG H, BIN C W, ZHAO Y H, et al. A novel low-loss and high-stability (1-x)Na0.98NbO3-xBi(Al0.5Y0.5)O3 lead-free composite ceramics for dielectric energy storage capacitors[J]. Chem Eng J, 2023, 475: 146426.

    [113] BAI X, FAN T, CHEN G, et al. Enhanced dielectric relaxation and low-electric-field energy storage properties of NaNbO3 ceramics prepared by co-doping MgO and BiYbO3[J]. Ceram Int, 2022, 48(22): 33861-33870.

    [114] ZHANG L, CHEN Z G, LUO G G, et al. NaNbO3-based short-range antiferroelectric ceramics with ultrahigh energy storage performance[J]. J Eur Ceram Soc, 2023, 43(14): 6077-6083.

    [115] DONG X Y, LI X, CHEN X L, et al. (1-x)[0.90NN-0.10Bi (Mg2/3Nb1/3)O3]-x(Bi0.5Na0.5)0.7Sr0.3TiO3 ceramics with core-shell structures: A pathway for simultaneously achieving high polarization and breakdown strength[J]. Nano Energy, 2022, 101: 107577.

    [116] KANG R R, WANG Z P, YANG W J, et al. Extraordinary energy storage performance and thermal stability in sodium niobate-based ceramics modified by the ion disorder and stabilized antiferroelectric orthorhombic R phase[J]. J Mater Chem A, 2021, 9(43): 24387-24396.

    [117] CHEN H Y, SHI J P, CHEN X L, et al. Excellent energy storage properties and stability of NaNbO3-Bi(Mg0.5Ta0.5)O3 ceramics by introducing (Bi0.5Na0.5)0.7Sr0.3TiO3[J]. J Mater Chem A, 2021, 9(8): 4789-4799.

    [118] WU S Y, FU B, ZHANG J J, et al. Superb energy storage capability for NaNbO3-based ceramics featuring labyrinthine submicro-domains with clustered lattice distortions[J]. Small, 2023, 19(45): e2303915.

    [119] WEI K, DUAN J H, ZHOU X F, et al. Achieving ultrahigh energy storage performance for NaNbO3-based lead-free antiferroelectric ceramics via the coupling of the stable antiferroelectric R phase and nanodomain engineering[J]. ACS Appl Mater Interfaces, 2023, 15(41): 48354-48364.

    [120] CHEN H Y, SHI J P, DONG X Y, et al. Enhanced thermal and frequency stability and decent fatigue endurance in lead-free NaNbO3-based ceramics with high energy storage density and efficiency[J]. J Materiomics, 2022, 8(2): 489-497.

    [121] CHEN H Y, WANG X, DONG X Y, et al. Adjusting the energy-storage characteristics of 0.95NaNbO3-0.05Bi(Mg0.5Sn0.5)O3 ceramics by doping linear perovskite materials[J]. ACS Appl Mater Interfaces, 2022, 14(22): 25609-25619.

    [122] XU M, WANG X, NONG P, et al. 0.90(0.88NaNbO3-0.12Bi(Ni0.5Zr0.5)O3)-0.10CaTiO3 lead-free dielectric ceramics with high energy storage properties [J], ACS Appl Mater Interfaces, 2023, 6(3): 1630-1638.

    [123] XU Z Q, LIU Z, DAI K, et al. Simultaneously achieving large energy density and high efficiency in NaNbO3-(Sr, Bi)TiO3-Bi(Mg, Zr)O3 relaxor ferroelectric ceramics for dielectric capacitor applications[J]. J Mater Chem A, 2022, 10(26): 13907-13916.

    WANG Zhentao, LI Da, ZHAO Weichen, LIU Jinnan, XU Diming, ZHOU Di. Research Progress on NaNbO3-Based Ceramics for Capacitive Energy Storage[J]. Journal of the Chinese Ceramic Society, 2024, 52(4): 1460
    Download Citation