[1] K. Guo, L. Chen, G. Yang, Boosting electromagnetic wave absorption of Ti3AlC2 by improving effective electrical conductivity. J. Adv. Ceram. 12, 1533–1546 (2023).
[2] X. Liu, J. Zhou, Y. Xue, X. Lu, Structural engineering of hierarchical magnetic/carbon nanocomposites via in situ growth for high-efficient electromagnetic wave absorption. Nano-Micro Lett. 16, 174 (2024).
[3] L. Qiao, J. Bi, G. Liang, Y. Yang, H. Wang et al., Synthesis of high-entropy MXenes with high-efficiency electromagnetic wave absorption. J. Adv. Ceram. 12, 1902–1918 (2023).
[4] C. Li, D. Li, S. Zhang, L. Ma, L. Zhang et al., Interface engineering of titanium nitride nanotube composites for excellent microwave absorption at elevated temperature. Nano-Micro Lett. 16, 168 (2024).
[5] K. Zhang, W. Lv, J. Chen, H. Ge, C. Chu et al., Synthesis of RGO/AC/Fe3O4 composite having 3D hierarchically porous morphology for high effective electromagnetic wave absorption. Compos. Part B-Eng. 169, 1–8 (2019).
[6] Y. Li, Z. Guan, J. Jiang, L. Zhen, Evolution of the microstructure and electromagnetic properties of Fe–Si–Al particles during post ball-milling annealing. J. Mater. Res. Technol. 29, 3532–3542 (2024).
[7] G. De Bellis, A. Tamburrano, A. Dinescu, M.L. Santarelli, M.S. Sarto, Electromagnetic properties of composites containing graphite nanoplatelets at radio frequency. Carbon 49, 4291–4300 (2011).
[8] Y. Dai, M. Sun, C. Liu, Z. Li, Electromagnetic wave absorbing characteristics of carbon black cement-based composites. Cement Concrete Comp. 32, 508–513 (2010).
[9] T. Zhao, C. Hou, H. Zhang, R. Zhu, S. She et al., Electromagnetic wave absorbing properties of amorphous carbon nanotubes. Sci. Rep. 4, 5619 (2014).
[10] F. Ye, Q. Song, Z. Zhang, W. Li, S. Zhang et al., Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv. Funct. Mater. 28, 1707205 (2018).
[11] U.R. Farooqui, A.L. Ahmad, N.A. Hamid, Graphene oxide: a promising membrane material for fuel cells. Renew. Sust. Energ. Rev. 82, 714–733 (2018).
[12] M.Z. Iqbal, A.U. Rehman, S. Siddique, Prospects and challenges of graphene based fuel cells. J. Energy Chem. 39, 217–234 (2019).
[13] T. Ma, Y. Zhang, K. Ruan, H. Guo, M. He et al., Advances in 3D printing for polymer composites: a review. InfoMat. 6, e12568 (2024).
[14] H. Zhang, J. Cheng, H. Wang, Z. Huang, Q. Zheng et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv. Funct. Mater. 32, 2108194 (2021).
[15] Z. Wu, H. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34, 2107538 (2022).
[16] Y. Wu, Y. Zhao, M. Zhou, S. Tan, R. Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 14, 171 (2022).
[17] X. Guan, Z. Yang, Y. Zhu, L. Yang, M. Zhou et al., The controllable porous structure and s-doping of hollow carbon sphere synergistically act on the microwave attenuation. Carbon 188, 1–11 (2022).
[18] G. Chen, L. Zhang, B. Luo, H. Wu, Optimal control of the compositions, interfaces, and defects of hollow sulfide for electromagnetic wave absorption. J. Colloid Interface Sci. 607, 24–33 (2022).
[19] R. Peymanfar, F. Fazlalizadeh, Microwave absorption performance of ZnAl2O4. Chem. Eng. J. 402, 126089 (2020).
[20] T.T. Li, L. Xia, T. Zhang, B. Zhong, J. Dai et al., Facile synthesis of Sn/Reduced graphene oxide composites with tunable dielectric performance toward enhanced microwave absorption. Front. Mater. 7, 108 (2020).
[21] T. Li, L. Xia, H. Yang, X. Wang, T. Zhang et al., Construction of a Cu–Sn heterojunction interface derived from a Schottky junction in Cu@Sn/rGO composites as a highly efficient dielectric microwave absorber. ACS Appl. Mater. Interfaces 13, 11911–11919 (2021).
[22] B. Kuang, W. Song, M. Ning, J. Li, Z. Zhao et al., Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide. Carbon 127, 209–217 (2018).
[23] Y. Zhang, L. Zhang, L. Tang, R. Du, B. Zhang, S-NiSe/HG nanocomposites with balanced dielectric loss encapsulated in room-temperature self-healing polyurethane for microwave absorption and corrosion protection. ACS Nano 18, 8411–8422 (2024).
[24] C. Xin, W. Shang, J. Hu, C. Zhu, J. Guo et al., Integration of morphology and electronic structure modulation on atomic Iron-Nitrogen-Carbon catalysts for highly efficient oxygen reduction. Adv. Funct. Mater. 32, 2108345 (2021).
[25] B. Zhao, R. Li, Q. Men, Z. Yan, H. Lv et al., Transformation of 2D flakes to 3D hollow bowls: Matthew effect enables defects to prevail in electromagnetic wave absorption of hollow rGO bowls. Small 20, 2208135 (2024).
[26] C. Sun, X. Xu, C. Gui, F. Chen, Y. Wang et al., High-quality epitaxial N doped graphene on SiC with tunable interfacial interactions via electron/ion bridges for stable lithium-ion storage. Nano-Micro Lett. 15, 202 (2023).
[27] J. Xiao, H. Zhan, X. Wang, Z.Q. Xu, Z. Xiong et al., Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics. Nat. Nanotechnol. 15, 683–689 (2020).
[28] R. Shu, Z. Wan, J. Zhang, Y. Wu, Y. Liu et al., Facile design of three-dimensional Nitrogen-doped reduced graphene oxide/multi-walled carbon nanotube composite foams as lightweight and highly efficient microwave absorbers. ACS Appl. Mater. Interfaces 12, 4689–4698 (2020).
[29] L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34, 2106195 (2022).
[30] R. Peymanfar, M. Yektaei, S. Javanshir, E. Selseleh-Zakerin, Regulating the energy band-gap, UV–Vis light absorption, electrical conductivity, microwave absorption, and electromagnetic shielding effectiveness by modulating doping agent. Polymer 209, 122981 (2020).
[31] R. Peymanfar, E. Selseleh-Zakerin, A. Ahmadi, Tailoring energy band gap and microwave absorbing features of graphite-like carbon nitride (g-C3N4). J. Alloy. Compd. 867, 159039 (2021).
[32] P. Liu, Y. Zhang, J. Yan, Y. Huang, L. Xia et al., Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 368, 285–298 (2019).
[33] P.M. Sudeep, S. Vinayasree, P. Mohanan, P.M. Ajayan, T.N. Narayanan et al., Fluorinated graphene oxide for enhanced S and X-band microwave absorption. Appl. Phys. Lett. 106, 221603 (2015).
[34] L. Quan, F.X. Qin, H.T. Lu, D. Estevez, Y.F. Wang et al., Sequencing dual dopants for an electromagnetic tunable graphene. Chem. Eng. J. 413, 127421 (2021).
[35] Y. Kang, Z. Chu, D. Zhang, G. Li, Z. Jiang et al., Incorporate boron and nitrogen into graphene to make BCN hybrid nanosheets with enhanced microwave absorbing properties. Carbon 61, 200–208 (2013).
[36] B. Quan, W. Shi, S.J.H. Ong, X. Lu, P.L. Wang et al., Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 29, 1901236 (2019).
[37] R. Peymanfar, S. Javanshir, M.R. Naimi-Jamal, S.H. Tavassoli, Morphology and medium influence on microwave characteristics of nanostructures: a review. J. Mater. Sci. 56, 17457–17477 (2021).
[38] H. Dogari, R. Peymanfar, H. Ghafuri, Microwave absorbing characteristics of porphyrin derivates: a loop of conjugated structure. RSC Adv. 13, 22205–22215 (2023).
[39] R. Peymanfar, N. Khodamoradipoor, Preparation and characterization of copper chromium oxide nanoparticles using modified sol-gel route and evaluation of their microwave absorption properties. Phys. Status Solidi A 216, 1900057 (2019).
[40] X. Liu, C.Z. Wang, Y.X. Yao, W.C. Lu, M. Hupalo et al., Bonding and charge transfer by metal adatom adsorption on graphene. Phys. Rev. B 83, 235411 (2011).
[41] P. Hota, A.J. Akhtar, S. Bhattacharya, M. Miah, S.K. Saha, Ferromagnetism in graphene due to charge transfer from atomic Co to graphene. Appl. Phys. Lett. 111, 042402 (2017).
[42] G. Xie, B. Guo, J.R. Gong, Metal oxide/graphene/metal sandwich structure for efficient photoelectrochemical water oxidation. Adv. Funct. Mater. 33, 2210420 (2022).
[43] H. Su, Y.H. Hu, Recent advances in graphene-based materials for fuel cell applications. Energy Sci. Eng. 9, 958–983 (2021).
[44] J.S. Bates, M.R. Johnson, F. Khamespanah, T.W. Root, S.S. Stahl, Heterogeneous M–N–C catalysts for aerobic oxidation reactions: Lessons from oxygen reduction electrocatalysts. Chem. Rev. 123, 6233–6256 (2023).
[45] C.X. Zhao, B.Q. Li, J.N. Liu, Q. Zhang, Intrinsic electrocatalytic activity regulation of M–M–C single-atom catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 60, 4448–4463 (2021).
[46] S. Wang, D. Feng, Z. Zhang, X. Liu, K. Ruan et al., Highly thermally conductive polydimethylsiloxane composites with controllable 3D GO@f-CNTs networks via self-sacrificing template method. Chinese J. Polym. Sci. 42, 897–906 (2024).
[47] J. Yang, Q. Wen, B. Feng, Y. Wang, X. Xiong. Microstructural evolution and electromagnetic wave absorbing performance of single-source-precursor-synthesized SiCuCN-based ceramic nanocomposites. J. Adv. Ceram. 12, 1299–1316 (2023).
[48] L. Wang, Z. Cai, L. Su, M. Niu, K. Peng et al., Bifunctional SiC/Si3N4 aerogel for highly efficient electromagnetic wave absorption and thermal insulation. J. Adv. Ceram. 12, 309–320 (2023).
[49] X. Ao, W. Zhang, Z. Li, J.G. Li, L. Soule et al., Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters. ACS Nano 13, 11853–11862 (2019).
[50] L. Li, N. Li, J.W. Xia, S.L. Zhou, X.Y. Qian et al., A pH-universal ORR catalyst with atomic Fe-heteroatom (N, S) sites for high-performance Zn-air batteries. Nano Res. 16, 9416–9425 (2023).
[51] L. Lin, Q. Zhu, A.W. Xu, Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 136, 11027–11033 (2014).
[52] T. Gao, R. Zhao, Y. Li, Z. Zhu, C. Hu et al., Sub-nanometer Fe clusters confined in carbon nanocages for boosting dielectric polarization and broadband electromagnetic wave absorption. Adv. Funct. Mater. 32, 2204370 (2022).
[53] S. Wang, Y. Xu, R. Fu, H. Zhu, Q. Jiao et al., Rational construction of hierarchically porous Fe–Co/N-doped carbon/rGO composites for broadband microwave absorption. Nano-Micro Lett. 11, 76 (2019).
[54] Y. Mun, M.J. Kim, S.A. Park, E. Lee, Y. Ye et al., Soft-template synthesis of mesoporous non-precious metal catalyst with Fe–Nx/C active sites for oxygen reduction reaction in fuel cells. Appl. Catal. B-Environ. Energy 222, 191–199 (2018).
[55] L. Li, S. Huang, R. Cao, K. Yuan, C. Lu et al., Optimizing microenvironment of asymmetric N, S-coordinated single-atom Fe via axial fifth coordination toward efficient oxygen electroreduction. Small 18, 2105387 (2022).
[56] X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BM@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 34, 2313544 (2024).
[57] Y. Liu, X. Huang, X. Yan, L. Xia, T. Zhang et al., Pushing the limits of microwave absorption capability of carbon fiber in fabric design based on genetic algorithm. J. Adv. Ceram. 12, 329–340 (2023).
[58] K. Zhang, Y. Liu, Y. Liu, Y. Yan, G. Ma et al., Tracking regulatory mechanism of trace Fe on graphene electromagnetic wave absorption. Nano-Micro Lett. 16, 66 (2024).
[59] H. Tan, J. Tang, J. Henzie, Y. Li, X. Xu et al., Assembly of hollow carbon nanospheres on graphene nanosheets and creation of iron-nitrogen-doped porous carbon for oxygen reduction. ACS Nano 12, 5674–5683 (2018).
[60] M.S. Kim, J. Lee, H.S. Kim, A. Cho, K.H. Shim et al., Heme cofactor-resembling Fe–N single site embedded graphene as nanozymes to selectively detect H2O2 with high sensitivity. Adv. Funct. Mater. 30, 1905410 (2019).
[61] C. Wen, X. Li, R. Zhang, C. Xu, W. You et al., High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2Tx MXene@Ni microspheres. ACS Nano 16, 1150–1159 (2022).
[62] Y. Liu, Y. Wang, N. Wu, M. Han, W. Liu et al., Diverse structural design strategies of MXene-based macrostructure for high-performance electromagnetic interference shielding. Nano-Micro Lett. 15, 240 (2023).
[63] T. Xu, J. Li, D. Zhao, X. Chen, G. Sun et al., Structural engineering enabled bimetallic (Ti1−γNbγ)2AlC solid solution structure for efficient electromagnetic wave absorption in Gigahertz. Small 19, 2300119 (2023).
[64] Y. Yan, K. Zhang, G. Qin, B. Gao, T. Zhang et al., Phase engineering on MoS2 to realize dielectric gene engineering for enhancing microwave absorbing performance. Adv. Funct. Mater. 34, 2316338 (2024).
[65] E. Selseleh-Zakerin, A. Mirkhan, M. Shafiee, M. Alihoseini, M. Khani et al., Plasma engineering toward improving the microwave-absorbing/shielding feature of a biomass-derived material. Langmuir 40, 12148–12158 (2024).
[66] R. Peymanfar, P. Mousivand, A. Mirkhan, Fabrication of ZnS/g-C3N4/gypsum plaster nanocomposite toward refining electromagnetic pollution and saving energy. Energy Technol-Ger. 12, 2300684 (2024).
[67] S. Sheykhmoradi, A. Ghaffari, A. Mirkhan, G. Ji, S. Tan et al., Dendrimer-assisted defect and morphology regulation for improving optical, hyperthermia, and microwave-absorbing features. Dalton Trans. 53, 4222–4236 (2024).
[68] S.M. Seyedian, A. Ghaffari, A. Mirkhan, G. Ji, S. Tan et al., Manipulating the phase and morphology of MgFe2O4 nanoparticles for promoting their optical, magnetic, and microwave absorbing/shielding characteristics. Ceram. Int. 50, 13447–13458 (2024).