[1] TURCER L R, PADTURE N P. Towards multifunctional thermal environmental barrier coatings (TEBCs) based on rare-earth pyrosilicate solid-solution ceramics[J]. Scripta Mater, 2018, 154: 111-117.
[3] YANG G, CHEN Z, LI C, et al. Microstructural and mechanical property evolutions of plasma-sprayed YSZ coating during high-temperature exposure: Comparison study between 8YSZ and 20YSZ[J]. J Therm Spray Techn, 2013, 22(8): 1294-1302.
[6] ILAVSKY J, WALLACE J, STALICK J K. Thermal spray yttria-stabilized zirconia phase changes during annealing[J]. J Therm Spray Techn, 2001, 10(3): 497-501.
[7] ZHOU F, WANG Y, CUI Z, et al. Thermal cycling behavior of nanostructured 8YSZ, SZ/8YSZ and 8CSZ/8YSZ thermal barrier coatings fabricated by atmospheric plasma spraying[J]. Ceram Int, 2017, 43(5): 4102-4111.
[9] WANG J, CHONG X, ZHOU R, et al. Microstructure and thermal properties of RETaO4 (RE = Nd, Eu, Gd, Dy, Er, Yb, Lu) as promising thermal barrier coating materials[J]. Scripta Mater, 2017, 126: 24-28.
[10] WU P, ZHOU Y, WU F, et al. Theoretical and experimental investigations of mechanical properties for polymorphous YTaO4 ceramics[J]. J Am Ceram Soc, 2019, 102(12): 7656-7664.
[11] FENG J, SHIAN S, XIAO B, et al. First-principles calculations of the high-temperature phase transformation in yttrium tantalate[J]. Phys Rev B, 2014, 90(9): 094102.
[12] CHEN L, HU M, WU P, et al. Thermal expansion performance and intrinsic lattice thermal conductivity of ferroelastic RETaO4 ceramics[J]. J Am Ceram Soc, 2019, 102(8): 4809-4821.
[13] WANG J, ZHOU Y, CHONG X, et al. Microstructure and thermal properties of a promising thermal barrier coating: YTaO4[J]. Ceram Int, 2016, 42(12): 13876-13881.
[14] ZHOU Y, GAN M, YU W, et al. First-principles study of thermophysical properties of polymorphous YTaO4 ceramics[J]. J Am Ceram Soc, 2021, 104(12): 6467-6480.
[15] FENG J, REN X, WANG X, et al. Thermal conductivity of ytterbia-stabilized zirconia[J]. Scripta Mater, 2012, 66(1): 41-44.
[16] ZHAO M, REN X, YANG J, et al. Thermo-mechanical properties of ThO2-doped Y2O3 stabilized ZrO2 for thermal barrier coatings[J]. Ceram Int, 2016, 42(1): 501-508.
[17] HONG W C, CHEN F, SHEN Q, et al. Microstructural evolution and mechanical properties of (Mg, Co, Ni, Cu, Zn)O high-entropy ceramics[J]. J Am Ceram Soc, 2019, 102(4): 2228-2237.
[18] NING S, WEN T, YE B, et al. Low temperature molten salt synthesis of high entropy carbide nanopowders[J]. J Am Ceram Soc, 2020, 103(3): 2244-2251.
[19] JIN T, SANG X, UNOCIC R R, et al. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy[J]. Adv Mater, 2018, 30(23): 707512.
[20] JIANG S, HU T, GILD J, et al. A new class of high-entropy perovskite oxides[J]. Scripta Mater, 2018, 142: 116-120.
[21] YE B, WEN T, NGUYEN M C, et al. First-principles study, fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C high- entropy ceramics[J]. Acta Mater, 2019, 170: 15-23.
[22] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Adv Eng Mater, 2004, 6(5): 299-303.
[23] CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Mater Sci and Eng A, 2004, 375: 213-218.
[24] YEH J W, LIN S J. Breakthrough applications of high-entropy materials[J]. J Mater Res, 2018, 33(19): 3129-3137.
[25] GLASSCOTT M W, PENDERGAST A D, GOINES S, et al. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis[J]. Nat Commun, 2019, 10(1): 2650.
[26] ZHANG W W, WEI Z Y, ZHANG L Y, et al. Low-thermal- conductivity thermal barrier coatings with a multi-scale pore design and sintering resistance following thermal exposure[J]. Rare Met, 2020, 39(4): 352-367.
[27] REN X, TIAN Z, ZHANG J, et al. Equiatomic quaternary (Y1/4Ho1/4Er1/4Yb1/4)2SiO5 silicate: A perspective multifunctional thermal and environmental barrier coating material[J]. Scripta Mater, 2019, 168: 47-50.
[28] GILD J, SAMIEE M, BRAUN JL, et al. High-entropy fluorite oxides[J]. J Eur Ceram Soc, 2018, 38(10): 3578-3584.
[29] ZHAO Z Z, XIANG H M, DAI F Z, et al. (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7: A novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate[J]. J Mater Sci Technol, 2019, 35(11): 2647-2651.
[30] LI F, ZHOU L, LIU J X, et al. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials[J]. J Adv Ceram, 2019, 8(4): 576-582.
[31] WANG J, WU F, ZOU R, et al. High-entropy ferroelastic rare-earth tantalite ceramic: (Y0.2Ce0.2Sm0.2Gd0.2Dy0.2) TaO4[J]. J Am Ceram Soc, 2021, 104(11): 5873-5882.
[32] LEITNER J, CHUCHVALEC P, SEDMIDUBSKY D, et al. Estimation of heat capacities of solid mixed oxides[J]. Thermochim Acta, 2002, 395(1/2): 27-46.
[33] EVANS A G, CHARLES E A. Fracture toughness determinations by indentation[J]. J Am Ceram Soc, 1976, 59(7?8): 371?372.
[34] KIBSEY M, ROMUALDEZ J, HUANG X, et al. Mechanical properties of titania-doped yttria stabilized zirconia (TiYSZ) for use as thermal barrier coating (TBC)[J]. J Eng Gas Turb Power, 2011, 133(12): 122101.
[35] YE B, WEN T, NGUYEN M C, et al. First-principles study, fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C high- entropy ceramics[J]. Acta Mater, 2019, 170: 15-23.
[36] WU P, HU M, CHEN L, et al. Investigation on microstructures and thermos-physical properties of ferroelastic (Y1-xDyx)TaO4 ceramics[J]. Mater, 2018, 4: 478-486.
[37] MACAULEY C A, FERNANDEZ A N, LEVI C G. Phase equilibria in the ZrO2-YO1.5-TaO2.5 system at 1 500 ℃[J]. J Eur Ceram Soc, 2017, 37: 4888-4901.
[38] WU P, CHONG X Y, FENG J. Effect of Al3+ doping on mechanical and thermal properties of DyTaO4 as promising thermal barrier coating application[J]. J Am Ceram Soc, 2018, 101(5): 1818-1823.
[39] JANG B K, MATSUBARA H. Hardness and Young's modulus of nanoporous EB-PVD YSZ coatings by nanoindentation[J]. J Alloy Compound, 2005, 402(1-2): 237-241.
[40] GADAG S, SUBBARAYAN G, BARKER W. Thermo-elastic properties of dense YSZ and porous Ni-ZrO2 monolithic and isotropic materials[J]. J Mater Sci, 2006, 41(4): 1221-1232.
[41] ZHANG Y L, GUO L, YANG Y P, et al. Influence of Gd2O3 and Yb2O3 co-doping on phase stability, thermo-physical properties and sintering of 8YSZ[J]. Chin J Aero, 2012, 25(6): 6.
[43] SCHLICHTING K W, PADTURE N P, KLEMENS P G. Thermal conductivity of dense and porous yttria-stabilized zirconia[J]. J Mater Sci, 2001, 36(12): 3003-3010.
[44] LEHMANN H, PITZER D, PRACHT G, et al. Thermal conductivity and thermal expansion coefficients of lanthanum rare-earth-element zirconates system[J]. J Am Ceram Soc, 2004, 86(8): 1338-1344.
[45] WU P, CHONG X, WU F, ET AL. Investigation of the thermophysical properties of (Y1-xYbx) TaO4 ceramics[J]. J Eur Ceram Soc, 2020, 40(8): 3111-3121.