Fig. 1. Multi-scale dense feature fusion network
Fig. 2. Multi-scale feature fusion residual block
Fig. 3. Upsampling network
Fig. 4. Reconstruction results of Img040 in Urban100
Fig. 5. Reconstruction results of Img056 in Urban100
Fig. 6. Reconstruction results of Img092 in Urban100
Fig. 7. PSNR results of different D, C and G models
Fig. 8. Reconstruction results of Img056 in Urban100
Fig. 9. Reconstruction results of Img081 in Urban100
Fig. 10. PSNR and parameters on Set5 (×4) dataset of different models
Model | 层次特征融合 | 密集特征融合 | PSNR/dB | SSIM |
---|
NSFB | √ | × | 32.30 | 0.929 9 | | × | √ | 32.35 | 0.930 5 | Resblock | √ | × | 31.50 | 0.922 0 | | × | √ | 31.53 | 0.922 2 | RDN | √ | × | 32.22 | 0.928 9 | | × | √ | 32.29 | 0.929 6 | MSRB | √ | × | 32.29 | 0.929 7 | | × | √ | 32.36 | 0.930 4 | MFRB | √ | × | 32.35 | 0.930 3 | | × | √ | 32.41 | 0.932 2 |
|
Table 1. Effects of different connection modes and different feature extraction modules on model performance
模型 | 缩放 因子 | Set5 | Set14 | BSD100 | Urban100 |
---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM |
---|
Bicubic | ×2 | 33.66 | 0.929 9 | 30.24 | 0.868 7 | 29.56 | 0.843 1 | 26.88 | 0.840 1 | SRCNN | ×2 | 36.66 | 0.954 2 | 32.43 | 0.906 3 | 31.36 | 0.887 9 | 29.50 | 0.894 6 | VDSR | ×2 | 37.54 | 0.958 7 | 33.03 | 0.912 4 | 31.90 | 0.896 0 | 30.76 | 0.914 0 | DRCN | ×2 | 37.63 | 0.958 4 | 33.06 | 0.910 8 | 31.85 | 0.894 7 | 30.76 | 0.914 7 | LapSRN | ×2 | 37.53 | 0.959 1 | 33.08 | 0.910 9 | 31.80 | 0.894 9 | 30.41 | 0.911 2 | MSRN | ×2 | 38.08 | 0.960 5 | 33.74 | 0.917 0 | 32.23 | 0.901 3 | 32.22 | 0.932 6 | IMDN | ×2 | 38.00 | 0.960 5 | 33.63 | 0.917 7 | 32.19 | 0.899 6 | 32.17 | 0.928 3 | OISR-SK2 | ×2 | 38.12 | 0.960 9 | 33.80 | 0.919 3 | 32.26 | 0.900 6 | 32.48 | 0.931 7 | LatticeNet | ×2 | 38.15 | 0.961 0 | 33.78 | 0.919 3 | 32.25 | 0.900 5 | 32.43 | 0.930 2 | DID-D5 | ×2 | 38.15 | 0.961 0 | 33.77 | 0.919 0 | 32.27 | 0.900 6 | 32.38 | 0.930 5 | MDFN | ×2 | 38.14 | 0.961 0 | 33.83 | 0.919 6 | 32.27 | 0.900 6 | 32.41 | 0.931 0 | Bicubic | ×3 | 30.39 | 0.868 2 | 27.54 | 0.773 6 | 27.21 | 0.738 4 | 24.46 | 0.734 4 | SRCNN | ×3 | 32.75 | 0.909 0 | 29.30 | 0.821 5 | 28.41 | 0.786 3 | 26.24 | 0.798 9 | VDSR | ×3 | 33.66 | 0.921 3 | 29.77 | 0.831 4 | 28.82 | 0.797 6 | 27.14 | 0.827 9 | DRCN | ×3 | 33.85 | 0.921 5 | 29.89 | 0.831 7 | 28.81 | 0.795 4 | 27.16 | 0.831 1 | LapSRN | ×3 | 33.82 | 0.922 7 | 29.89 | 0.832 0 | 28.83 | 0.797 3 | 27.08 | 0.827 2 | MSRN | ×3 | 34.38 | 0.926 2 | 30.34 | 0.839 5 | 29.08 | 0.804 1 | 28.08 | 0.855 4 |
|
Table 2. Index comparison under benchmark dataset when scaling factor is 2, 3 and 4
模型 | 缩放 因子 | Set5 | Set14 | BSD100 | Urban100 |
---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM |
---|
IMDN | ×3 | 34.36 | 0.927 0 | 30.32 | 0.841 7 | 29.09 | 0.804 6 | 28.17 | 0.851 9 | OISR-SK2 | ×3 | 34.55 | 0.928 2 | 30.46 | 0.844 3 | 29.18 | 0.807 5 | 28.50 | 0.859 7 | LatticeNet | ×3 | 34.53 | 0.928 1 | 30.39 | 0.842 4 | 29.15 | 0.805 9 | 28.33 | 0.853 8 | DID-D5 | ×3 | 34.55 | 0.928 0 | 30.49 | 0.844 6 | 29.19 | 0.806 9 | 28.39 | 0.856 6 | MDFN | ×3 | 34.60 | 0.928 4 | 30.50 | 0.844 9 | 29.21 | 0.807 5 | 28.52 | 0.859 1 | Bicubic | ×4 | 28.42 | 0.810 4 | 26.00 | 0.701 9 | 25.96 | 0.667 4 | 23.14 | 0.657 0 | SRCNN | ×4 | 30.48 | 0.862 8 | 27.49 | 0.750 3 | 26.90 | 0.710 1 | 24.53 | 0.722 1 | VDSR | ×4 | 31.35 | 0.883 0 | 28.01 | 0.768 0 | 27.29 | 0.725 1 | 25.18 | 0.754 3 | DRCN | ×4 | 31.56 | 0.881 0 | 28.15 | 0.762 0 | 27.24 | 0.715 0 | 25.15 | 0.753 0 | LapSRN | ×4 | 31.54 | 0.885 5 | 28.19 | 0.772 0 | 27.32 | 0.728 0 | 25.21 | 0.755 3 | MSRN | ×4 | 32.07 | 0.890 3 | 28.60 | 0.775 1 | 27.52 | 0.727 3 | 26.04 | 0.789 6 | IMDN | ×4 | 32.21 | 0.894 8 | 28.58 | 0.781 1 | 27.56 | 0.735 3 | 26.04 | 0.783 8 | OISR-SK2 | ×4 | 32.32 | 0.896 5 | 28.72 | 0.784 3 | 27.66 | 0.739 0 | 26.37 | 0.795 3 | LatticeNet | ×4 | 32.30 | 0.896 2 | 28.68 | 0.783 0 | 27.62 | 0.736 7 | 26.25 | 0.787 3 | DID-D5 | ×4 | 32.33 | 0.896 8 | 28.75 | 0.785 2 | 27.68 | 0.738 6 | 26.36 | 0.793 3 | MDFN | ×4 | 32.41 | 0.897 6 | 28.78 | 0.786 0 | 27.69 | 0.739 3 | 26.39 | 0.794 4 |
|
Table 2. Index comparison under benchmark dataset when scaling factor is 2, 3 and 4
模型 | 参数量/M | Flops/G | PSNR/dB | SSIM |
---|
MSRN | 6.08 | 107.27 | 32.07 | 0.890 3 | OISR-SK2 | 5.51 | 117.41 | 32.32 | 0.896 5 | DID-D5 | 5.21 | 93.03 | 32.33 | 0.896 8 | MDFN | 4.89 | 87.76 | 32.41 | 0.897 6 |
|
Table 3. Complexity and performance of different models