• Optics and Precision Engineering
  • Vol. 28, Issue 1, 244 (2020)
SHEN Fan1, LI Han-lin1, SUN Bin2, and YU Chun-yu1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/ope.20202801.0244 Cite this Article
    SHEN Fan, LI Han-lin, SUN Bin, YU Chun-yu. X-ray image denoising using blind source separation in anscombe domain[J]. Optics and Precision Engineering, 2020, 28(1): 244 Copy Citation Text show less

    Abstract

    To remove the Poisson noise from the X-ray images, in this paper, it was proposed that noise was reduced by using Nonlinear Principal Component Analysis (NLPCA) from the X-ray image sequence. At first, an X-ray image sequence was sampled and the Poisson noise in images was converted into Gaussian noise through Anscombe transform; every noisy image was regarded as a combination of the noise components and the signal component, and then NLPCA was used to separate the signal component from the noise components to reduce noise; the final denoised image was obtained by using Anscombe inverse transform. The results show that, when the number of noisy images in the sequence increases from 2 to 50, the proposed denoising method increases the noisy Shepp-Logan image′s PSNR value from 28.289 4 dB to 37.267 8 dB and increases the SSIM value from 0.700 7 to 0.963 8. Compared with other denoising methods, the proposed denoising method can preserve more image details while reducing the Poisson noise.