• Photonics Research
  • Vol. 12, Issue 6, 1262 (2024)
Dengke Qi1,2, Xiangyu Wang1,*, Zhenghua Li1, Jiayu Ma1..., Ziyang Chen3, Yueming Lu2 and Song Yu1|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • 2Key Laboratory of Trustworthy Distributed Computing and Service (MoE), Beijing University of Posts and Telecommunications, Beijing 100876, China
  • 3State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China
  • show less
    DOI: 10.1364/PRJ.519140 Cite this Article Set citation alerts
    Dengke Qi, Xiangyu Wang, Zhenghua Li, Jiayu Ma, Ziyang Chen, Yueming Lu, Song Yu, "Experimental demonstration of a quantum downstream access network in continuous variable quantum key distribution with a local local oscillator," Photonics Res. 12, 1262 (2024) Copy Citation Text show less
    References

    [1] R. Van Meter. Quantum networking and internetworking. IEEE Netw., 26, 59-64(2012).

    [2] P. Komar, E. M. Kessler, M. Bishof. A quantum network of clocks. Nat. Phys., 10, 582-587(2014).

    [3] R. Jozsa, D. S. Abrams, J. P. Dowling. Quantum clock synchronization based on shared prior entanglement. Phys. Rev. Lett., 85, 2010(2000).

    [4] D. Gottesman, T. Jennewein, S. Croke. Longer-baseline telescopes using quantum repeaters. Phys. Rev. Lett., 109, 070503(2012).

    [5] J. I. Cirac, A. Ekert, S. F. Huelga. Distributed quantum computation over noisy channels. Phys. Rev. A, 59, 4249-4254(1999).

    [6] N. Gisin, G. Ribordy, W. Tittel. Quantum cryptography. Rev. Mod. Phys., 74, 145-195(2002).

    [7] S. Pirandola, U. L. Andersen, L. Banchi. Advances in quantum cryptography. Adv. Opt. Photon., 12, 1012-1236(2020).

    [8] F. Grosshans, P. Grangier. Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett., 88, 057902(2002).

    [9] F. Grosshans, G. Van Assche, J. Wenger. Quantum key distribution using Gaussian-modulated coherent states. Nature, 421, 238-241(2003).

    [10] C. Weedbrook, A. M. Lance, W. P. Bowen. Quantum cryptography without switching. Phys. Rev. Lett., 93, 170504(2004).

    [11] A. Leverrier, P. Grangier. Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation. Phys. Rev. Lett., 102, 180504(2009).

    [12] A. Leverrier, F. Grosshans, P. Grangier. Finite-size analysis of a continuous-variable quantum key distribution. Phys. Rev. A, 81, 062343(2010).

    [13] F. Furrer, T. Franz, M. Berta. Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. Phys. Rev. Lett., 109, 100502(2012).

    [14] A. Leverrier. Composable security proof for continuous-variable quantum key distribution with coherent states. Phys. Rev. Lett., 114, 070501(2015).

    [15] A. Leverrier. Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction. Phys. Rev. Lett., 118, 200501(2017).

    [16] S. Ghorai, P. Grangier, E. Diamanti. Asymptotic security of continuous-variable quantum key distribution with a discrete modulation. Phys. Rev. X, 9, 021059(2019).

    [17] J. Lin, T. Upadhyaya, N. Lütkenhaus. Asymptotic security analysis of discrete-modulated continuous-variable quantum key distribution. Phys. Rev. X, 9, 041064(2019).

    [18] S. Pirandola. Composable security for continuous variable quantum key distribution: trust levels and practical key rates in wired and wireless networks. Phys. Rev. Res., 3, 043014(2021).

    [19] X. Wang, M. Xu, Y. Zhao. Non-Gaussian reconciliation for continuous-variable quantum key distribution. Phys. Rev. Appl., 19, 054084(2023).

    [20] B. Qi, L.-L. Huang, L. Qian. Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers. Phys. Rev. A, 76, 052323(2007).

    [21] P. Jouguet, S. Kunz-Jacques, A. Leverrier. Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics, 7, 378-381(2013).

    [22] B. Qi, P. Lougovski, R. Pooser. Generating the local oscillator ‘locally’ in continuous-variable quantum key distribution based on coherent detection. Phys. Rev. X, 5, 041009(2015).

    [23] D. Huang, P. Huang, D. Lin. Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep., 6, 19201(2016).

    [24] S. Kleis, M. Rueckmann, C. G. Schaeffer. Continuous variable quantum key distribution with a real local oscillator using simultaneous pilot signals. Opt. Lett., 42, 1588-1591(2017).

    [25] F. Laudenbach, B. Schrenk, C. Pacher. Pilot-assisted intradyne reception for high-speed continuous-variable quantum key distribution with true local oscillator. Quantum, 3, 193(2019).

    [26] S. Ren, S. Yang, A. Wonfor. Demonstration of high-speed and low-complexity continuous variable quantum key distribution system with local local oscillator. Sci. Rep., 11, 9454(2021).

    [27] Y. Tian, P. Wang, J. Liu. Experimental demonstration of continuous-variable measurement-device-independent quantum key distribution over optical fiber. Optica, 9, 492-500(2022).

    [28] Y. Pan, H. Wang, Y. Shao. Experimental demonstration of high-rate discrete-modulated continuous-variable quantum key distribution system. Opt. Lett., 47, 3307-3310(2022).

    [29] Z. Chen, X. Wang, S. Yu. Continuous-mode quantum key distribution with digital signal processing. npj Quantum Inf., 9, 28(2023).

    [30] C. Elliott, D. Pearson, G. Troxel. Quantum cryptography in practice. Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, 227-238(2003).

    [31] M. Peev, C. Pacher, R. Alléaume. The Secoqc quantum key distribution network in Vienna. New J. Phys., 11, 075001(2009).

    [32] L. Salvail, M. Peev, E. Diamanti. Security of trusted repeater quantum key distribution networks. J. Comput. Security, 18, 61-87(2010).

    [33] M. Sasaki, M. Fujiwara, H. Ishizuka. Field test of quantum key distribution in the Tokyo QKD network. Opt. Express, 19, 10387-10409(2011).

    [34] B. Fröhlich, J. F. Dynes, M. Lucamarini. A quantum access network. Nature, 501, 69-72(2013).

    [35] R. Bedington, J. M. Arrazola, A. Ling. Progress in satellite quantum key distribution. npj Quantum Inf., 3, 30(2017).

    [36] Y.-A. Chen, Q. Zhang, T.-Y. Chen. An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature, 589, 214-219(2021).

    [37] D. Huang, P. Huang, H. Li. Field demonstration of a continuous-variable quantum key distribution network. Opt. Lett., 41, 3511-3514(2016).

    [38] Y. Huang, T. Shen, X. Wang. Realizing a downstream-access network using continuous-variable quantum key distribution. Phys. Rev. Appl., 16, 064051(2021).

    [39] G.-J. Fan-Yuan, F.-Y. Lu, S. Wang. Measurement-device-independent quantum key distribution for nonstandalone networks. Photonics Res., 9, 1881-1891(2021).

    [40] G.-J. Fan-Yuan, F.-Y. Lu, S. Wang. Robust and adaptable quantum key distribution network without trusted nodes. Optica, 9, 812-823(2022).

    [41] X. Wang, Z. Chen, Z. Li. Experimental upstream transmission of continuous variable quantum key distribution access network. Opt. Lett., 48, 3327-3330(2023).

    [42] Y. Xu, T. Wang, H. Zhao. Round-trip multi-band quantum access network. Photonics Res., 11, 1449-1464(2023).

    [43] X.-C. Ma, S.-H. Sun, M.-S. Jiang. Local oscillator fluctuation opens a loophole for eve in practical continuous-variable quantum-key-distribution systems. Phys. Rev. A, 88, 022339(2013).

    [44] P. Jouguet, S. Kunz-Jacques, E. Diamanti. Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution. Phys. Rev. A, 87, 062313(2013).

    [45] D. B. Soh, C. Brif, P. J. Coles. Self-referenced continuous-variable quantum key distribution protocol. Phys. Rev. X, 5, 041010(2015).

    [46] T. Shen, X. Wang, Z. Chen. Experimental demonstration of LLO continuous-variable quantum key distribution with polarization loss compensation. IEEE Photonics J., 15, 7600109(2023).

    [47] P. M. Djuric, J. H. Kotecha, J. Zhang. Particle filtering. IEEE Signal Process. Mag., 20, 19-38(2003).

    [48] Y. Engel, S. Mannor, R. Meir. The kernel recursive least-squares algorithm. IEEE Trans. Signal Process., 52, 2275-2285(2004).

    [49] C.-H. Yeh, C.-W. Chow, C.-H. Hsu. 40-gb/s time-division-multiplexed passive optical networks using downstream OOK and upstream OFDM modulations. IEEE Photonics Technol. Lett., 22, 118-120(2010).

    [50] C. Xia, N. Chand, A. Velázquez-Bentez. Time-division-multiplexed few-mode passive optical network. Opt. Express, 23, 1151-1158(2015).

    [51] A. Wang, L. Zhu, J. Liu. Demonstration of hybrid orbital angular momentum multiplexing and time-division multiplexing passive optical network. Opt. Express, 23, 29457-29466(2015).

    [52] X. Wang, H. Wang, C. Zhou. Continuous-variable quantum key distribution with low-complexity information reconciliation. Opt. Express, 30, 30455-30465(2022).

    [53] A. Marie, R. Alléaume. Self-coherent phase reference sharing for continuous-variable quantum key distribution. Phys. Rev. A, 95, 012316(2017).

    [54] S. Pirandola, R. Laurenza, C. Ottaviani. Fundamental limits of repeaterless quantum communications. Nat. Commun., 8, 15043(2017).

    Dengke Qi, Xiangyu Wang, Zhenghua Li, Jiayu Ma, Ziyang Chen, Yueming Lu, Song Yu, "Experimental demonstration of a quantum downstream access network in continuous variable quantum key distribution with a local local oscillator," Photonics Res. 12, 1262 (2024)
    Download Citation