• Acta Photonica Sinica
  • Vol. 43, Issue 6, 606003 (2014)
CAO Fengzhen1、*, ZHANG Peiqing1、2, DAI Shixun1, WANG Xunsi1, XU Tiefeng1, and NIE Qiuhua1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/gzxb20144306.0606003 Cite this Article
    CAO Fengzhen, ZHANG Peiqing, DAI Shixun, WANG Xunsi, XU Tiefeng, NIE Qiuhua. 3~5 Microns Chalcogenide Photonic Crystal Fiber with Broadband Ultra low Flattened Dispersion[J]. Acta Photonica Sinica, 2014, 43(6): 606003 Copy Citation Text show less
    References

    [1] NI Zhicheng. The research of dispersion characteristics and application of photonic crystal fiber [D]. Nanjing: Nanjing University of Posts and Telecommunications, 2009.

    [2] RUSSELL P. Photonic crystal fibers [J]. Science, 2003, 299(5605): 358-362.

    [3] DAI Nengli, LI Yang, PENG Jinggang, et al.The research of flattened dispersion photonic crystal fiber [J].Laser and Optoelectronics Progress, 2011, 48(001):1-8.

    [4] WADSWORTH W, KNIGHT J, ORTIGOSABLANCH A, et al. Soliton effects in photonic crystal fibres at 850 nm [J]. Electronics Letters, 2000, 36(1): 53-55.

    [5] CERQUEIRA S, MARCONI J D, RIEZNIK A A, et al. Multiple fourwave mixing in ultraflattened dispersion photonic crystal fibers [C]. Optical Fiber communication, National Fiber Optic Engineers Conference, 2008, Conference on. IEEE: 1-3.

    [6] ZHANG Xia, REN Xiaomin, WANG Zinan, et al. Fourwave mixing based 10Gb/s tunable wavelength conversion in dispersionflattened microstructure fibers [J].Chinese Optics Letters, 2007, 5(7): 386-388.

    [7] SHAO Xiaojie, YANG Dongxiao, GENG Dan.The studies of wavelength conversion of fourwave mixing based on photonic crystal fiber [J]. Acta Photonica Sinica, 2009, 38(3): 652-655.

    [8] WANG Qiuguo, ZHANG Hu, ZHANG Xia, et al. The experimental study of fourwave mixing in photonic crystal fiber [J]. Semiconductor Optoelectronics, 2008, 29(3): 415-417.

    [9] ZHANG Lan, YANG Bojun, WANG Qiuguo, et al.The research of alloptical wavelength conversion based on photonic crystal fiber [J]. Acta Photonica Sinica, 2008, 37(11): 2203-2205.

    [10] ZHOU Huili, ZHANG Xia, GAO Jian, et al. The research of achieving optical wave conversion in flattened dispersion photonic crystal fiber [J].Optoelectronics·Laser, 2009, 20(1): 28-31.

    [11] XU Yantao, GUO Haitao, LU Min, et al. Research progress of high nonlinear chalcogenide glass [J].Materials Review, 2010, 24(10): 49-53.

    [12] SMEKTALA F, BRILLAND L, CHARTIER T, et al. Recent advances in the development of holey optical fibers based on sulphide glasses [C]. Integrated Optoelectronic Devices 2006, International Society for Optics and Photonics, 2006, 61280M8.

    [13] ZHANG Hua, NIE Qiuhua, DAI Shixun, et al.Investigation of nonlinear optical properties of GeS2Sb2S3 chalcogenide glasses [J]. Bull Chin Ceram Soc, 2008(03): 466-470+480.

    [14] ANDRIESH A, IOVU M.Diffraction and luminescent structures based on chalcogenide glasses and polymers [J].Physica Status Solidi, 2009, 246(8): 1862-1865.

    [15] GUO Xiarui, YANG Dexing, ZHAO Jianlin, et al. Bending loss properties of photonic crystal fiber [J]. Acta Photonica Sinica, 2007, 36(10): 1817-1820.

    [16] CHERIF R, SALEM A B, ZGHAL M, et al. Highly nonlinear As2Se3based chalcogenide photonic crystal fiber for midinfrared supercontinuum generation [J].Optical Engineering, 2010, 49(9): 095002-0950026.

    [17] SHAW L, THIELEN P, KUNG F, et al. IR supercontinuum generation in AsSe photonic crystal fiber [C]. Adv. Solid State Lasers (ASSL), 2005, Seattle, WA.

    [18] HU J, MENYUK C R, SHAW L B, et al. Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers [J].Optics Express, 2010, 18(7): 6722-6739.

    [19] HU J, MENYUK C R, SHAW L B, et al.Computational study of 35 μm source created by using supercontinuum generation in As2S3 chalcogenide fibers with a pump at 2 μm [J].Optics Letters, 2010, 35(17): 2907-2909.

    [20] GAO W, EL AMRAOUI M, LIAO M, et al. Midinfrared supercontinuum generation in a suspendedcore As2S3chalcogenide microstructured optical fiber [J].Optics Express, 2013, 21(8): 9573-9583.

    [21] TROLES J, BRILLAND L, SMEKTALA F, et al. Chalcogenide photonic crystal fibers for near and middle infrared applications [C]. Transparent Optical Networks, 2007. ICTON'07. 9th International Conference on IEEE, 2007, 2: 297-300.

    [22] YUAN Jinhui, HOU Lantian, ZHOU Guiyao, et al. Preparation and experiment of high nonlinear flattened dispersion photonic crystal fiber [J]. Optoelectronics·Laser, 2008, 19(8): 1007-1010.

    [23] MENG Jia, HOU Lantian, ZHOU Guiyao, et al. Preparation and research of small core refractive index guided photonic crystal fiber [J]. Chinese Journal of Lasers, 2008, 35(9): 1350-1354.

    [24] WU Ming, LIU Hairong, HUANG Dexiu. Dispersion property in highly nonlinear photonic crystal fiber [J]. Acta Optica Sinica, 2008, 28(3): 539-542.

    [25] GUAN Shouhua, YU Qingxu, LIU Jiahong. Study on photonic crystal fiber dispersion control method [J].Study on Optical Communications, 2011, 37(6): 44.

    [26] YANG Wangxi.The theory design of communication band nearzero flattened dispersion photonic crystal fiber [D]. Qinhuangdao: Yanshan University, 2012.

    [27] DU Hailong, DING Chunfeng, ZHEN Yi. Numerical study on the loss properties of photonic crystal fibers [J]. Study on Optical Communications, 2013, 39(3): 39-40.

    CLP Journals

    [1] DONG Yang-jian, DAI Shi-xun, ZHANG Pei-qing, LIU Yong-xing, YANG Pei-long, WANG Xun-si. Design and Performance of a Low-loss Chalcogenide Hollow-core Photonic Crystal Fiber at 4.3 μm[J]. Acta Photonica Sinica, 2015, 44(3): 306003

    CAO Fengzhen, ZHANG Peiqing, DAI Shixun, WANG Xunsi, XU Tiefeng, NIE Qiuhua. 3~5 Microns Chalcogenide Photonic Crystal Fiber with Broadband Ultra low Flattened Dispersion[J]. Acta Photonica Sinica, 2014, 43(6): 606003
    Download Citation