[1] Zhao J B, Hu N, Wu J Y, Li W X, Zhu Z J, Wang M F, Zheng Y J and Dai H J 2022 A review of piezoelectric metamaterials for underwater equipment Front. Phys.10 1068838
[2] Birjis Y, Swaminathan S, Nazemi H, Raj G C A, Munirathinam P, Abu-Libdeh A and Emadi A 2022 Piezoelectric micromachined ultrasonic transducers (PMUTs): performance metrics, advancements, and applications Sensors22 9151
[3] Jung J, Lee W, Kang W, Shin E, Ryu J and Choi H 2017 Review of piezoelectric micromachined ultrasonic transducers and their applications J. Micromech. Microeng.27 113001
[4] Fu Y Q et al 2017 Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications Prog. Mater. Sci.89 31–91
[5] Murayama R, Wang B J, Shindou K and Katsunaga K 2020 Study of an ultrasonic probe installed into a small diameter-pipe using an electromagnetic acoustic transducer Engineering12 549–62
[6] Allik H, Webman K M and Hunt J T 1974 Vibrational response of sonar transducers using piezoelectric finite elements J. Acoust. Soc. Am.56 1782–91
[7] Thompson R B 1973 A model for the electromagnetic generation and detection of Rayleigh and lamb waves IEEE Trans. Sonics Ultrason.20 340–6
[8] Mikhailov A V, Gobov Y L, Smorodinskii Y G and Shcherbinin S V 2015 An electromagnetic–acoustic transducer with pulsed biasing Russ. J. Nondestruct. Test.51 467–75
[9] Sekhar M C, Veena E, Kumar N S, Naidu K C B, Mallikarjuna A and Basha D B 2022 A review on piezoelectric materials and their applications Cryst. Res. Technol.58 2200130
[10] Belzberg M et al 2020 Minimally invasive therapeutic ultrasound: ultrasound-guided ultrasound ablation in neuro-oncology Ultrasonics108 106210
[11] Lescrauwaet E, Vonck K, Sprengers M, Raedt R, Klooster D, Carrette E and Boon P 2022 Recent advances in the use of focused ultrasound as a treatment for epilepsy Front. Neurosci.16 886584
[12] Baek H, Lockwood D, Mason E J, Obusez E, Poturalski M, Rammo R, Nagel S J and Jones S E 2022 Clinical intervention using focused ultrasound (FUS) stimulation of the brain in diverse neurological disorders Front. Neurol.13 880814
[13] Gorick C M et al 2022 Applications of focused ultrasound-mediated blood-brain barrier opening Adv. Drug. Deliv. Rev.191 114583
[14] Al-Jumaily A M, Liaquat H and Paul S 2024 Focused ultrasound for dermal applications Ultrasound Med. Biol.50 8–17
[15] Elias W J et al 2016 A randomized trial of focused ultrasound thalamotomy for essential tremor New Engl. J. Med.375 730–9
[16] Ren D Y, Li C Y, Shi J H and Chen R M 2022 A review of high-frequency ultrasonic transducers for photoacoustic imaging applications IEEE Trans. Ultrason. Ferroelectr. Freq. Control69 1848–58
[17] Peng C, Wu H Y, Kim S, Dai X M and Jiang X N 2021 Recent advances in transducers for intravascular ultrasound (IVUS) imaging Sensors21 3540
[18] Shung K K, Cannata J M and Zhou Q F 2007 Piezoelectric materials for high frequency medical imaging applications: a review J. Electroceram.19 141–7
[19] Ozcelik A, Rufo J, Guo F, Gu Y Y, Li P, Lata J and Huang T J 2018 Acoustic tweezers for the life sciences Nat. Methods15 1021–8
[20] Cummer S A, Christensen J and Al A 2016 Controlling sound with acoustic metamaterials Nat. Rev. Mater.1 16001
[21] Quadri S A, Waqas M, Khan I, Khan M A, Suriya S S, Farooqui M and Fiani B 2018 High-intensity focused ultrasound: past, present, and future in neurosurgery Neurosurg. Focus44 E16
[22] Elhelf I A S, Albahar H, Shah U, Oto A, Cressman E and Almekkawy M 2018 High intensity focused ultrasound: the fundamentals, clinical applications and research trends Diagn. Int. Imaging99 349–59
[23] Jiang X X, Savchenko O, Li Y F, Qi S A, Yang T L, Zhang W and Chen J 2019 A review of low-intensity pulsed ultrasound for therapeutic applications IEEE Trans. Biomed. Eng.66 2704–18
[24] Yu K, Niu X D and He B 2020 Neuromodulation management of chronic neuropathic pain in the central nervous system Adv. Funct. Mater.30 1908999
[25] Meng Y, Hynynen K and Lipsman N 2021 Applications of focused ultrasound in the brain: from thermoablation to drug delivery Nat. Rev. Neurol.17 7–22
[26] Bachu V S, Kedda J, Suk I, Green J J and Tyler B 2021 High-intensity focused ultrasound: a review of mechanisms and clinical applications Ann. Biomed. Eng.49 1975–91
[27] Javid A, Ilham S and Kiani M 2023 A review of ultrasound neuromodulation technologies IEEE Trans. Biomed. Circuits Syst.17 1084–96
[28] Sugioka K 2019 Hybrid femtosecond laser three-dimensional micro-and nanoprocessing: a review Int. J. Extrem. Manuf.1 012003
[29] Wang J S, Fang F Z, An H J, Wu S, Qi H M, Cai Y and Guo G Y 2023 Laser machining fundamentals: micro, nano, atomic and close-to-atomic scales Int. J. Extrem. Manuf.5 012005
[30] Hasan M, Zhao J W and Jiang Z Y 2019 Micromanufacturing of composite materials: a review Int. J. Extrem. Manuf.1 012004
[31] Gao W Y, Lei M W, Li B H, Li G, Li K, Feng Q L and Wang J L 2020 Investigations on the laser cutting of LiNbO3Optik201 163508
[32] Retz K, Kotopoulis S, Kiserud T, Matre K, Eide G E and Sande R 2017 Measured acoustic intensities for clinical diagnostic ultrasound transducers and correlation with thermal index Ultrasound Obstet Gynecol.50 236–41
[33] Rumack C M, Wilson S R and Charboneau J W 2007 Diagnostic Ultrasound (Peoples Military Medical Press)
[34] Redford D T 2006 Understanding ultrasound physics Anesthesia Analgesia102 337
[35] von Ramm O T and Smith S W 1983 Beam steering with linear arrays IEEE Trans. Biomed. Eng.30 438–52
[36] Choi E and Roh Y 2017 Optimal design of a concave annular high intensity focused ultrasound transducer for medical treatment Sens. Actuators A 263 91–101
[37] Lin Z, Guo X S, Tu J, Cheng J C, Wu J R, Huang P T and Zhang D 2015 A collimated focused ultrasound beam of high acoustic transmission and minimum diffraction achieved by using a lens with subwavelength structures Appl. Phys. Lett.107 113505
[38] Li F Q et al 2013 Sub-wavelength ultrasonic therapy using a spherical cavity transducer with open ends Appl. Phys. Lett.102 204102
[39] Shung K K 2011 Diagnostic ultrasound: past, present, and future J. Med. Biol. Eng.31 371–4
[40] Quarato C M I et al 2023 A review on biological effects of ultrasounds: key messages for clinicians Diagnostics13 855
[41] Fry W J and Fry R B 1954 Determination of absolute sound levels and acoustic absorption coefficients by thermocouple probes—theory J. Acoust. Soc. Am.26 294–310
[42] Nowicki A 2020 Safety of ultrasonic examinations; thermal and mechanical indices Med. Ultrasonogr.22 203–10
[43] Humphrey V F 2007 Ultrasound and matter-physical interactions Prog. Biophys. Mol. Biol.93 195–211
[44] Song P F, Andre M, Chitnis P, Xu S, Croy T, Wear K and Sikdar S 2023 Clinical, safety and engineering perspectives on wearable ultrasound technology: a review IEEE Trans. Ultrason. Ferroelectr. Freq. Control71 730–44
[45] Dalecki D 2004 Mechanical bioeffects of ultrasound Annu. Rev. Biomed. Eng.6 229–48
[46] Holland C K and Apfel R E 1989 An improved theory for the prediction of microcavitation thresholds IEEE Trans. Ultrason. Ferroelectr. Freq. Control36 204–8
[47] Rathod V T 2020 A review of acoustic impedance matching techniques for piezoelectric sensors and transducers Sensors20 4051
[48] Lee W and Roh Y 2017 Ultrasonic transducers for medical diagnostic imaging Biomed. Eng. Lett.7 91–97
[49] Hao J G, Li W, Zhai J W and Chen H 2019 Progress in high-strain perovskite piezoelectric ceramics Mater. Sci. Eng.135 1–57
[50] Low T S and Guo W 1995 Modeling of a three-layer piezoelectric bimorph beam with hysteresis J. Microelectromech. Syst.4 230–7
[51] Rdel J, Jo W, Seifert K T P, Anton E M, Granzow T and Damjanovic D 2009 Perspective on the development of lead-free piezoceramics J. Am. Ceram. Soc.92 1153–77
[52] Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T and Nakamura M 2004 Lead-free piezoceramics Nature432 84–87
[53] Karaki T, Yan K, Miyamoto T and Adachi M 2007 Lead-free piezoelectric ceramics with large dielectric and piezoelectric constants manufactured from BaTiO3 Nano-powder Jpn. J. Appl. Phys.46 L97
[54] Liu W F and Ren X B 2009 Large piezoelectric effect in Pb-free ceramics Phys. Rev. Lett.103 257602
[55] Su M, Xia X X, Liu B Q, Zhang Z Q, Liu R, Cai F Y, Qiu W B and Sun L 2021 High frequency focal transducer with a Fresnel zone plate for intravascular ultrasound Appl. Phys. Lett.119 143702
[56] Butt Z, Pasha R A, Qayyum F, Anjum Z, Ahmad N and Elahi H 2016 Generation of electrical energy using lead zirconate titanate (PZT-5A) piezoelectric material: analytical, numerical and experimental verifications J. Mech. Sci. Technol.30 3553–8
[57] Tiefensee F, Becker-Willinger C, Heppe G, Herbeck-Engel P and Jakob A 2010 Nanocomposite cerium oxide polymer matching layers with adjustable acoustic impedance between 4 MRayl and 7 MRayl Ultrasonics50 363–6
[58] Kawai H 1969 The piezoelectricity of poly (vinylidene Fluoride) Jpn. J. Appl. Phys.8 975
[59] Sappati K K and Bhadra S 2018 Piezoelectric polymer and paper substrates: a review Sensors18 3605
[60] Gomes J, Serrado Nunes J, Sencadas V and Lanceros-Mndez S 2010 Influence of the -phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride) Smart Mater. Struct.19 065010
[61] Soin N et al 2014 Novel “3-D spacer” all fibre piezoelectric textiles for energy harvesting applications Energy Environ. Sci.7 1670–9
[62] Newnham R E, Skinner D P and Cross L E 1978 Connectivity and piezoelectric-pyroelectric composites Mater. Res. Bull.13 525–36
[63] Hu H J et al 2023 A wearable cardiac ultrasound imager Nature613 667–75
[64] Lin M Y et al 2024 A fully integrated wearable ultrasound system to monitor deep tissues in moving subjects Nat. Biotechnol.42 448–57
[65] Hu H J et al 2023 Stretchable ultrasonic arrays for the three-dimensional mapping of the modulus of deep tissue Nat. Biomed. Eng.7 1321–34
[66] Wang C H et al 2018 Monitoring of the central blood pressure waveform via a conformal ultrasonic device Nat. Biomed. Eng.2 687–95
[67] Wang C H et al 2021 Continuous monitoring of deep-tissue haemodynamics with stretchable ultrasonic phased arrays Nat. Biomed. Eng.5 749–58
[68] Lin M Y, Hu H J, Zhou S and Xu S 2022 Soft wearable devices for deep-tissue sensing Nat. Rev. Mater.7 850–69
[69] Kabakov P, Kim T, Cheng Z X, Jiang X N and Zhang S J 2023 The versatility of piezoelectric composites Annu. Rev. Mater. Res.53 165–93
[70] Barrow D A, Petroff T E, Tandon R P and Sayer M 1997 Characterization of thick lead zirconate titanate films fabricated using a new sol gel based process J. Appl. Phys.81 876–81
[71] Ruan T, Wang Q, Hu Z Y, Xu Q D, Xi Y, Li L X, Yang B and Liu J Q 2023 Multifunctional high-density ultrasonic microsensor for ranging and 2D imaging Appl. Phys. Lett.123 063501
[72] Wang Q, Ruan T, Xu Q D, Yang B and Liu J Q 2021 Wearable multifunctional piezoelectric MEMS device for motion monitoring, health warning, and earphone Nano Energy89 106324
[73] Ti J M, Li J H, Fan Q Q, Ren W, Yu Q and Wang C H 2023 Magnetron sputtering of ZnO thick film for high frequency focused ultrasonic transducer J. Alloys Compd.933 167764
[74] Wu S, Liu K F, Wang W J, Li W, Wu T, Yang H and Li X X 2023 Aluminum nitride piezoelectric micromachined ultrasound transducer arrays for non-invasive monitoring of radial artery stiffness Micromachines14 539
[75] Cannata J M, Ritter T A, Chen W H, Silverman R H and Shung K K 2003 Design of efficient, broadband single-element (20–80 MHz) ultrasonic transducers for medical imaging applications IEEE Trans. Ultrason. Ferroelectr. Freq. Control50 1548–57
[76] Webster R A, Button T W, Meggs C, MacLennan D and Cochran S 2007. P3K-5 passive materials for high frequency ultrasound components Proceedings of 2007 IEEE Ultrasonics Symposium Proceedings (IEEE) pp 1925–8
[77] Nicolaides K, Nortman L and Tapson J 2010 The effect of backing material on the transmitting response level and bandwidth of a wideband underwater transmitting transducer using 1–3 piezocomposite material Phys. Proc.3 1041–5
[78] Manh T, Nguyen A T T, Johansen T F and Hoff L 2014 Microfabrication of stacks of acoustic matching layers for 15 MHz ultrasonic transducers Ultrasonics54 614–20
[79] Manh T, Jensen G U, Johansen T F and Hoff L 2013 Microfabricated 1–3 composite acoustic matching layers for 15 MHz transducers Ultrasonics53 1141–9
[80] Manh T, Jensen G U, Johansen T F and Hoff L 2012. Modeling and characterization of a silicon-epoxy 2–2 composite material Proceedings of 2012 IEEE International Ultrasonics Symposium (IEEE) pp 2234–7
[81] Zhang S, Yin L L and Fang N 2009 Focusing ultrasound with an acoustic metamaterial network Phys. Rev. Lett.102 194301
[82] Kaina N, Lemoult F, Fink M and Lerosey G 2015 Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials Nature525 77–81
[83] Fang H J, Chen Y, Wong C M, Qiu W B, Chan H L W, Dai J Y, Li Q and Yan Q F 2016 Anodic aluminum oxide-epoxy composite acoustic matching layers for ultrasonic transducer application Ultrasonics70 29–33
[84] Fei C L, Chiu C T, Chen X Y, Chen Z Y, Ma J G, Zhu B P, Shung K K and Zhou Q F 2016 Ultrahigh frequency (100 MHz-300 MHz) ultrasonic transducers for optical resolution medical imagining Sci. Rep.6 28360
[85] Goat C A and Whatmore R W 1999 The effect of grinding conditions on lead zirconate titanate machinability J. Eur. Ceram. Soc.19 1311–3
[86] Liu J H, Chen S Y and Li P C 2009 A single-element transducer with nonuniform thickness for high-frequency broadband applications IEEE Trans. Ultrason. Ferroelectr. Freq. Control56 379–86
[87] Kim J and Kim M 2022 Focal position control of ultrasonic transducer made of plano-concave form piezoelectric vibrator Ultrasonics121 106668
[88] Lu H T et al 2023 3D printing and processing of miniaturized transducers with near-pristine piezoelectric ceramics for localized cavitation Nat. Commun.14 2418
[89] Tang Y K and Kim E S 2022 Simple sacrificial-layer-free microfabrication processes for air-cavity Fresnel acoustic lenses (ACFALs) with improved focusing performance Microsyst. Nanoeng.8 75
[90] Li Z X, Yang S H, Wang D F, Shan H, Chen D D, Fei C L, Xiao M and Yang Y T 2021 Focus of ultrasonic underwater sound with 3D printed phononic crystal Appl. Phys. Lett.119 073501
[91] Chen Z Y, Qian X J, Song X, Jiang Q G, Huang R J, Yang Y, Li R Z, Shung K, Chen Y and Zhou Q F 2019 Three-dimensional printed piezoelectric array for improving acoustic field and spatial resolution in medical ultrasonic imaging Micromachines10 170
[92] Chen J, Dai J Y, Zhang C, Zhang Z T and Feng G P 2012 Broadband focusing ultrasonic transducers based on dimpled LiNbO3 plate with inversion layer IEEE Trans. Ultrason. Ferroelectr. Freq. Control59 2797–802
[93] Zhu B P, Fei C L, Wang C, Zhu Y H, Yang X F, Zheng H R, Zhou Q F and Shung K K 2017 Self-focused AlScN film ultrasound transducer for individual cell manipulation ACS Sens.2 172–7
[94] Zhang D C, Wang Z Y, Cheng Z W, Zhang W Y, Yang F and Yang S H 2021 An ellipsoidal focused ultrasound transducer for extend-focus photoacoustic microscopy IEEE Trans. Biomed. Eng.68 3748–52
[95] Chen Z Y et al 2016 3D printing of piezoelectric element for energy focusing and ultrasonic sensing Nano Energy27 78–86
[96] Yao D S et al 2019 Achieving the upper bound of piezoelectric response in tunable, wearable 3D printed nanocomposites Adv. Funct. Mater.29 1903866
[97] Melde K, Mark A G, Qiu T and Fischer P 2016 Holograms for acoustics Nature537 518–22
[98] Tarraz-Serrano D, Castieira-Ibez S, Minin O V, Candelas P, Rubio C and Minin I V 2019 Design of acoustical Bessel-like beam formation by a pupil masked soret zone plate lens Sensors19 378
[99] Liao G X, Luan C C, Wang Z W, Liu J P, Yao X H and Fu J Z 2021 Acoustic metamaterials: a review of theories, structures, fabrication approaches, and applications Adv. Mater. Technol.6 2000787
[100] Chen J, Xiao J, Lisevych D, Shakouri A and Fan Z 2018 Deep-subwavelength control of acoustic waves in an ultra-compact metasurface lens Nat. Commun.9 4920
[101] Cai Z R, Zhao S D, Huang Z D, Li Z, Su M, Zhang Z Y, Zhao Z P, Hu X T, Wang Y S and Song Y L 2019 Bubble architectures for locally resonant acoustic metamaterials Adv. Funct. Mater.29 1906984
[102] Datta S, Tamburrino A and Udpa L 2022 Gradient index metasurface lens for microwave imaging Sensors22 8319
[103] Liu H J, Zheng Y, Lu Y, Kang Q L, Guo K and Guo Z Y 2021 Helmholtz-resonator metasurface based high-efficiency acoustic focusing lens Ann. Phys.533 2100218
[104] Liu J F, Foiret J, Stephens D N, Le Baron O and Ferrara K W 2016 Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia Phys. Med. Biol.61 5275–96
[105] Ghanem M A, Maxwell A D, Kreider W, Cunitz B W, Khokhlova V A, Sapozhnikov O A and Bailey M R 2018 Field characterization and compensation of vibrational nonuniformity for a 256-element focused ultrasound phased array IEEE Trans. Ultrason. Ferroelectr. Freq. Control65 1618–30
[106] Foster F S, Larson J D, Mason M K, Shoup T S, Nelson G and Yoshida H 1989 Development of a 12 element annular array transducer for realtime ultrasound imaging Ultrasound Med. Biol.15 649–59
[107] Chen J, Lam K H, Dai J Y, Zhang C, Zhang Z T and Feng G P 2012 35 MHz PMN-PT single crystal annular array ultrasonic transducer Integr. Ferroelectr.139 116–22
[108] Snook K A, Hu C H, Shrout T R and Shung K K 2006 High-frequency ultrasound annular-array imaging. Part I: array design and fabrication IEEE Trans. Ultrason. Ferroelectr. Freq. Control53 300–8
[109] Lei Z H, Xie Y J, Chen Y, Yuan M D, Zeng L M, Ji X R and Wu D W 2020 Fabrication of high-frequency ultrasonic array transducers with outstanding performance based on laser techniques Proceedings of 2020 IEEE International Ultrasonics Symposium (IUS) (IEEE)
[110] Liu X Q, Chen Q D, Guan K M, Ma Z C, Yu Y H, Li Q K, Tian Z N and Sun H B 2017 Dry-etching-assisted femtosecond laser machining Laser Photonics Rev.11 1600115
[111] Brown J A, Demore C E M and Lockwood G R 2004 Design and fabrication of annular arrays for high-frequency ultrasound IEEE Trans. Ultrason. Ferroelectr. Freq. Control51 1010–7
[112] Sammoura F, Akhari S, Aqab N, Mahmoud M and Lin L W 2014. Multiple electrode piezoelectric micromachined ultrasonic transducers Proc. 2014 IEEE Int. Ultrasonics Symposium (IEEE) pp 305–8
[113] Ketterling J A, Aristizabal O, Turnbull D H and Lizzi F L 2005 Design and fabrication of a 40-MHz annular array transducer IEEE Trans. Ultrason. Ferroelectr. Freq. Control52 672–81
[114] Gottlieb E J, Cannata J M, Hu C H and Shung K K 2005 High frequency copolymer annular array ultrasound transducer fabrication technology Proceedings of 2005 IEEE Ultrasonics Symposium (IEEE) pp 121–4
[115] Pashaei V, Dehghanzadeh P, Enwia G, Bayat M, Majerus S J A and Mandal S 2020 Flexible body-conformal ultrasound patches for image-guided neuromodulation IEEE Trans. Biomed. Circuits Syst.14 305–18
[116] Ma Y J et al 2020 Flexible hybrid electronics for digital healthcare Adv. Mater.32 1902062
[117] Hur S, Choi H, Yoon G H, Kim N W, Lee D G and Kim Y T 2022 Planar ultrasonic transducer based on a metasurface piezoelectric ring array for subwavelength acoustic focusing in water Sci. Rep.12 1485
[118] Wang X Y, Wu H D, Zhang X D, Zhang D, Gong X and Zhang D 2018 Investigation of a multi-element focused air-coupled transducer AIP Adv.8 095010
[119] Jian X H, Liu P B, Li Z J, Lv J B, Yang C, Li P Y and Cui Y Y 2019 Development of self-focusing piezoelectric composite ultrasound transducer using laser engraving technology IEEE Trans. Ultrason. Ferroelectr. Freq. Control66 1866–73
[120] Li Z X, Zhao J X, Hou C X, Fei C L, Zheng C X, Lou L F, Chen D D, Li D and Yang Y T 2022 High-frequency self-focusing ultrasonic transducer with piezoelectric metamaterial IEEE Electron Device Lett.43 946–9
[121] Sun Y Q, Gao X M, Wang H, Chen Z G and Yang Z T 2018 A wideband ultrasonic energy harvester using 1–3 piezoelectric composites with non-uniform thickness Appl. Phys. Lett.112 043903
[122] Hou C X et al 2023 Active acoustic field modulation of ultrasonic transducers with flexible composites Commun. Phys.6 252
[123] Lee J, Jang J H and Chang J H 2017 Oblong-shaped-focused transducers for intravascular ultrasound imaging IEEE Trans. Biomed. Eng.64 671–80
[124] Chen G S, Liu H C, Lin Y C and Lin Y L 2013 Experimental analysis of 1–3 piezocomposites for high-intensity focused ultrasound transducer applications IEEE Trans. Biomed. Eng.60 128–34
[125] Li G F et al 2018 Imaging-guided dual-target neuromodulation of the mouse brain using array ultrasound IEEE Trans. Ultrason. Ferroelectr. Freq. Control65 1583–9
[126] Tipsawat P, Ilham S J, Yang J I, Kashani Z, Kiani M and Trolier-Mckinstry S 2022 32 element piezoelectric micromachined ultrasound transducer (PMUT) phased array for neuromodulation IEEE Open J. Ultrason. Ferroelectr. Freq. Control2 184–93
[127] Jiang L M, Chen H, Zeng Y S, Tan Z, Wu J G, Xing J and Zhu J G 2022 Potassium sodium niobate-based lead-free high-frequency ultrasonic transducers for multifunctional acoustic tweezers ACS Appl. Mater. Interfaces14 30979–90
[128] Yoon S, Williams J, Kang B J, Yoon C, Cabrera-Munoz N, Jeong J S, Lee S G, Shung K K and Kim H H 2015 Angled-focused 45 MHz PMN-PT single element transducer for intravascular ultrasound imaging Sens. Actuators A 228 16–22
[129] Fei C L, Yang Y H, Guo F F, Lin P F, Chen Q, Zhou Q F and Sun L 2018 PMN-PT single crystal ultrasonic transducer with half-concave geometric design for IVUS imaging IEEE Trans. Biomed. Eng.65 2087–92
[130] Lee J, Moon J Y and Chang J H 2018 A 35 MHz/105 MHz dual-element focused transducer for intravascular ultrasound tissue imaging using the third harmonic Sensors18 2290
[131] Fleischman A, Modi R, Nair A, Talman J, Lockwood G and Roy S 2003 Miniature high frequency focused ultrasonic transducers for minimally invasive imaging procedures Sens. Actuators A 103 76–82
[132] Zhou Q F, Sharp C, Cannata J M, Shung K K, Feng G H and Kim E S 2007 Self-focused high frequency ultrasonic transducers based on ZnO piezoelectric films Appl. Phys. Lett.90 113502
[133] Nguyen T P, Nguyen V T, Mondal S, Pham V H, Vu D D, Kim B G and Oh J 2020 Improved depth-of-field photoacoustic microscopy with a multifocal point transducer for biomedical imaging Sensors20 2020
[134] Fang C, Hu H and Zou J 2020 A focused optically transparent PVDF transducer for photoacoustic microscopy IEEE Sens. J.20 2313–9
[135] Park J et al 2021 Quadruple ultrasound, photoacoustic, optical coherence, and fluorescence fusion imaging with a transparent ultrasound transducer Proc. Natl Acad. Sci. USA118 e1920879118
[136] Ter Haar G and Coussios C 2007 High intensity focused ultrasound: physical principles and devices Int. J. Hyperth.23 89–104
[137] Lynn J G, Zwemer R L, Chick A J and Miller A E 1942 A new method for the generation and use of focused ultrasound in experimental biology J. Gen. Physiol.26 179–93
[138] Wu F et al 2004 Extracorporeal high intensity focused ultrasound ablation in the treatment of 1038 patients with solid carcinomas in China: an overview Ultrason. Sonochem.11 149–54
[139] Zippel D B and Papa M Z 2005 The use of MR imaging guided focused ultrasound in breast cancer patients; a preliminary phase one study and review Breast Cancer12 32–38
[140] Clement G T, Sun J, Giesecke T and Hynynen K 2000 A hemisphere array for non-invasive ultrasound brain therapy and surgery Phys. Med. Biol.45 3707–19
[141] Theis M et al 2023 Deep learning enables automated MRI-based estimation of uterine volume also in patients with uterine fibroids undergoing high-intensity focused ultrasound therapy Insights Imaging14 1
[142] Scipione R, Anzidei M, Bazzocchi A, Gagliardo C, Catalano C and Napoli A 2018 HIFU for bone metastases and other musculoskeletal applications Semin. Intervent Radiol.35 261–7
[143] Chen G S, Lin C Y, Jeong J S, Cannata J M, Lin W L, Chang H and Shung K K 2012 Design and characterization of dual-curvature 1.5-dimensional high-intensity focused ultrasound phased-array transducer IEEE Trans. Ultrason. Ferroelectr. Freq. Control59 150–5
[144] Woo J and Roh Y 2019 Design and fabrication of an annular array high intensity focused ultrasound transducer with an optimal electrode pattern Sens. Actuators A 290 156–61
[145] Karzova M M, Yuldashev P V, Khokhlova V A, Nartov F A, Morrison K P and Khokhlova T D 2021 Dual-use transducer for ultrasound imaging and pulsed focused ultrasound therapy IEEE Trans. Ultrason. Ferroelectr. Freq. Control68 2930–41
[146] Kiani L 2023 Ultrasound ablation treatment for PD Nat. Rev. Neurol.19 197
[147] Makin I R S, Mast T D, Faidi W, Runk M M, Barthe P G and Slayton M H 2005 Miniaturized ultrasound arrays for interstitial ablation and imaging Ultrasound Med. Biol.31 1539–50
[148] Zhang M Z, Narumi R, Azuma T, Okita K and Takagi S 2021 Numerical study on sector-vortex phased irradiation method using annular array transducer in high-intensity focused ultrasound treatment Ultrasonics115 106464
[149] Jeong J S, Cannata J M and Shung K K 2010 Dual-focus therapeutic ultrasound transducer for production of broad tissue lesions Ultrasound Med. Biol.36 1836–48
[150] Ma J G, Guo S J, Wu D, Geng X C and Jiang X N 2013 Design, fabrication, and characterization of a single-aperture 1.5-MHz/3-MHz dual-frequency HIFU transducer IEEE Trans. Ultrason. Ferroelectr. Freq. Control60 1519–29
[151] Park C Y, Kwon D S, Sung J H and Jeong J S 2017 Dual-frequency ultrasound transducer using inversion layer technique for therapeutic ultrasound surgery IEEE Sens. J.17 6859–66
[152] Harvey E N 1929 The effect of high frequency sound waves on heart muscle and other irritable tissues Am. J. Physiol.91 284–90
[153] Fry W J, Wulff V J, Tucker D and Fry F J 2005 Physical factors involved in ultrasonically induced changes in living systems: I. Identification of non-temperature effects J. Acoust. Soc. Am.22 867–76
[154] Fry F J, Ades H W and Fry W J 1958 Production of reversible changes in the central nervous system by ultrasound Science127 83–84
[155] Deffieux T, Wattiez N, Tanter M, Pouget P, Aubry J F and Younan Y 2015 Low intensity focused ultrasound modulates monkey visuomotor behavior J. Ther. Ultrasound3 O25
[156] Legon W, Sato T F, Opitz A, Mueller J, Barbour A, Williams A and Tyler W J 2014 Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans Nat. Neurosci.17 322–9
[157] Mehi E, Xu J M, Caler C J, Coulson N K, Moritz C T and Mourad P D 2014 Increased anatomical specificity of neuromodulation via modulated focused ultrasound PLoS One9 e86939
[158] Qian X J, Lu G X, Thomas B B, Li R Z, Chen X Y, Shung K K, Humayun M and Zhou Q F 2022 Noninvasive ultrasound retinal stimulation for vision restoration at high spatiotemporal resolution BME Front2022 9829316
[159] Lee J et al 2019 A MEMS ultrasound stimulation system for modulation of neural circuits with high spatial resolution in vitro Microsyst. Nanoeng.5 28
[160] Yu Y Y, Zhang Z Q, Cai F Y, Su M, Jiang Q J, Zhou Q F, Humayun M S, Qiu W B and Zheng H R 2019 A novel racing array transducer for noninvasive ultrasonic retinal stimulation: a simulation study Sensors19 1825
[161] Zhou H, Niu L L, Xia X X, Lin Z R, Liu X F, Su M, Guo R B, Meng L and Zheng H R 2019 Wearable ultrasound improves motor function in an MPTP mouse model of Parkinson's disease IEEE Trans. Biomed. Eng.66 3006–13
[162] Li G F et al 2019 Noninvasive ultrasonic neuromodulation in freely moving mice IEEE Trans. Biomed. Eng.66 217–24
[163] Liu W, Zhu C L and Wu D W 2021 Flexible and stretchable ultrasonic transducer array conformed to complex surfaces IEEE Electron Device Lett.42 240–3
[164] Wang S Y, Meng W L, Ren Z Y, Li B X, Zhu T J, Chen H, Wang Z, He B, Zhao D and Jiang H 2020 Ultrasonic neuromodulation and sonogenetics: a new era for neural modulation Front. Physiol.11 787
[165] Liang L L, Sun C H, Zhang R T, Han S W, Wang J A, Ren N and Liu H 2021 Piezotronic effect determined neuron-like differentiation of adult stem cells driven by ultrasound Nano Energy90 106634
[166] Costa T, Shi C, Tien K, Elloian J, Cardoso F A and Shepard K L 2021 An integrated 2D ultrasound phased array transmitter in CMOS with pixel pitch-matched beamforming IEEE Trans. Biomed. Circuits Syst.15 731–42
[167] Hu Z T, Yang Y H, Xu L, Hao Y and Chen H 2022 Binary acoustic metasurfaces for dynamic focusing of transcranial ultrasound Front. Neurosci.16 984953
[168] Maimbourg G, Houdouin A, Deffieux T, Tanter M and Aubry J F 2018 3D-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-element transducers Phys. Med. Biol.63 025026
[169] Maimbourg G, Houdouin A, Deffieux T, Tanter M and Aubry J F 2020 Steering capabilities of an acoustic lens for transcranial therapy: numerical and experimental studies IEEE Trans. Biomed. Eng.67 27–37
[170] Jimnez-Gambn S, Jimnez N, Benlloch J M and Camarena F 2019 Holograms to focus arbitrary ultrasonic fields through the skull Phys. Rev. Appl.12 014016
[171] Jimnez-Gambn S, Jimnez N and Camarena F 2020 Transcranial focusing of ultrasonic vortices by acoustic holograms Phys. Rev. Appl.14 054070
[172] Naor O, Hertzberg Y, Zemel E, Kimmel E and Shoham S 2012 Towards multifocal ultrasonic neural stimulation II: design considerations for an acoustic retinal prosthesis J. Neural Eng.9 026006
[173] Menz M, Oralkan , Khuri-Yakub P T and Baccus S A 2013 Precise neural stimulation in the retina using focused ultrasound J. Neurosci.33 4550–60
[174] Menz M D, Ye P, Firouzi K, Nikoozadeh A, Pauly K B, Khuri-Yakub P and Baccus S A 2019 Radiation force as a physical mechanism for ultrasonic neurostimulation of the ex vivo retina J. Neurosci.39 6251–64
[175] Gao M D et al 2017 Simulation study of an ultrasound retinal prosthesis with a novel contact-lens array for noninvasive retinal stimulation IEEE Trans. Neural Syst. Rehabil. Eng.25 1605–11
[176] Xu C L, Lu G X, Kang H C, Humayun M S and Zhou Q F 2022 Design and simulation of a ring transducer array for ultrasound retinal stimulation Micromachines13 1536
[177] Yoo S S, Bystritsky A, Lee J H, Zhang Y Z, Fischer K, Min B K, McDannold N J, Pascual-Leone A and Jolesz F A 2011 Focused ultrasound modulates region-specific brain activity Neuroimage56 1267–75
[178] Kim C C, Kim Y, Jeong S H, Oh K H, Nam K T and Sun J J 2020 An implantable ionic wireless power transfer system facilitating electrosynthesis ACS Nano14 11743–52
[179] Agarwal K, Jegadeesan R, Guo Y X and Thakor N V 2017 Wireless power transfer strategies for implantable bioelectronics IEEE Rev. Biomed. Eng.10 136–61
[180] Mou X L and Sun H J 2015 Wireless power transfer: survey and roadmap Proc. IEEE 81st Vehicular Technology Conf. (VTC Spring) (IEEE) pp 1–5
[181] Maleki T, Cao N, Song S H, Kao C, Ko S C and Ziaie B 2011 An ultrasonically powered implantable micro-oxygen generator (IMOG) IEEE Trans. Biomed. Eng.58 3104–11
[182] Islam S and Kim A 2018 Ultrasonic energy harvesting scheme for implantable active stent Proc.2018 IEEE Int. Microwave Biomedical Conf. (IMBioC) (IEEE) pp 70–72
[183] Shi Q F, Wang T and Lee C 2016 MEMS based broadband piezoelectric ultrasonic energy harvester (PUEH) for enabling self-powered implantable biomedical devices Sci. Rep.6 24946
[184] Yang Z T, Zeng D P, Wang H, Zhao C L and Tan J W 2015 Harvesting ultrasonic energy using 1–3 piezoelectric composites Smart Mater. Struct.24 075029
[185] Jin P et al 2021 A flexible, stretchable system for simultaneous acoustic energy transfer and communication Sci. Adv.7 eabg2507
[186] Sonmezoglu S, Fineman J R, Maltepe E and Maharbiz M M 2021 Monitoring deep-tissue oxygenation with a millimeter-scale ultrasonic implant Nat. Biotechnol.39 855–64
[187] Jiang L M, Lu G X, Yang Y, Zeng Y S, Sun Y Z, Li R Z, Humayun M S, Chen Y and Zhou Q F 2021 Photoacoustic and piezo-ultrasound hybrid-induced energy transfer for 3D twining wireless multifunctional implants Energy Environ. Sci.14 1490–505
[188] Hong Y et al 2021 A wood-templated unidirectional piezoceramic composite for transmuscular ultrasonic wireless power transfer Energy Environ. Sci.14 6574–85
[189] Hinchet R, Yoon H J, Ryu H, Kim M K, Choi E K, Kim D S and Kim S W 2019 Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology Science365 491–4
[190] Islam S, Oh E, Jun C, Kim J, Chang W S, Song S and Kim A 2023 Omni-directional ultrasonic powering via platonic solid receiver for mm-scale implantable devices ACS Mater. Lett.5 1876–85
[191] Jiang L M, Lu G X, Yang Y, Xu Y, Qi F J, Li J P, Zhu B P and Chen Y 2021 Multichannel piezo-ultrasound implant with hybrid waterborne acoustic metastructure for selective wireless energy transfer at megahertz frequencies Adv. Mater.33 2104251
[192] Yi X Y, Zheng W C, Cao H, Wang S G, Feng X L and Yang Z T 2021 Wireless power transmission for implantable medical devices using focused ultrasound and a miniaturized 1–3 piezoelectric composite receiving transducer IEEE Trans. Ultrason. Ferroelectr. Freq. Control68 3592–8
[193] Jiang L M, Wu B, Wei X W, Lv X, Xue H Y, Lu G X, Zeng Y S, Xing J, Wu W J and Wu J G 2022 Flexible lead-free piezoelectric arrays for high-efficiency wireless ultrasonic energy transfer and communication Mater. Horiz.9 2180–90
[194] Liu X Z et al 2022 An ultrasound-driven implantable wireless energy harvesting system using a triboelectric transducer Matter5 4315–31
[195] Zhang T et al 2022 Piezoelectric ultrasound energy–harvesting device for deep brain stimulation and analgesia applications Sci. Adv.8 eabk0159
[196] Piech D K, Johnson B C, Shen K, Ghanbari M M, Li K Y, Neely R M, Kay J E, Carmena J M, Maharbiz M M and Muller R 2020 A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication Nat. Biomed. Eng.4 207–22
[197] Jiang L M, Lu G X, Zeng Y S, Sun Y Z, Kang H C, Burford J, Gong C, Humayun M S, Chen Y and Zhou Q F 2022 Flexible ultrasound-induced retinal stimulating piezo-arrays for biomimetic visual prostheses Nat. Commun.13 3853
[198] Jiang L M et al 2019 Ultrasound-induced wireless energy harvesting for potential retinal electrical stimulation application Adv. Funct. Mater.29 1902522
[199] Ding X Y, Lin S C S, Kiraly B, Yue H J, Li S X, Chiang I K, Shi J J, Benkovic S J and Huang T J 2012 On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves Proc. Natl Acad. Sci. USA109 11105–9
[200] Zeng Y S et al 2022 Manipulation and mechanical deformation of leukemia cells by high-frequency ultrasound single beam IEEE Trans. Ultrason. Ferroelectr. Freq. Control69 1889–97
[201] Hwang J Y, Kim J, Park J M, Lee C, Jung H, Lee J and Shung K K 2016 Cell deformation by single-beam acoustic trapping: a promising tool for measurements of cell mechanics Sci. Rep.6 27238
[202] Marzo A, Seah S A, Drinkwater B W, Sahoo D R, Long B and Subramanian S 2015 Holographic acoustic elements for manipulation of levitated objects Nat. Commun.6 8661
[203] Thomas L, Petersson F and Andreas N 2007 Chip integrated strategies for acoustic separation and manipulation of cells and particles Chem. Soc. Rev.36 492–506
[204] Chen X Y, Lam K H, Chen R M, Chen Z Y, Yu P, Chen Z P, Shung K K and Zhou Q F 2017 An adjustable multi-scale single beam acoustic tweezers based on ultrahigh frequency ultrasonic transducer Biotechnol. Bioeng.114 2637–47
[205] Fei C L, Hsu H S, Vafanejad A, Li Y, Lin P F, Li D, Yang Y T, Kim E, Shung K K and Zhou Q F 2017 Ultrahigh frequency ZnO silicon lens ultrasonic transducer for cell-size microparticle manipulation J. Alloys Compd.729 556–62
[206] Zhen L Y, Liu Z D, Liu Z T, Wang Q, Liu J Q, Yao Z R and Yang B 2023 High-density flexible piezoelectric sensor array with double working modes IEEE Sens. J.5 5270–7