• Photonics Research
  • Vol. 2, Issue 3, 87 (2014)
Juanjuan Zheng1, Peng Gao1,2, Baoli Yao1,*, Tong Ye3..., Ming Lei1, Junwei Min1, Dan Dan1, Yanlong Yang1 and and Shaohui Yan1|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
  • 2Institut fur Technische Optik, Universitat Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
  • 3Department of Bioengineering, Clemson University, Clemson-MUSC Bioengineering Program, Charleston, South Carolina 29425, USA
  • show less
    DOI: 10.1364/PRJ.2.000087 Cite this Article Set citation alerts
    Juanjuan Zheng, Peng Gao, Baoli Yao, Tong Ye, Ming Lei, Junwei Min, Dan Dan, Yanlong Yang, and Shaohui Yan, "Digital holographic microscopy with phase-shift-free structured illumination," Photonics Res. 2, 87 (2014) Copy Citation Text show less
    References

    [1] J. W. Goodman, R. W. Lawrence. Digital image formation from electronically detected holograms. Appl. Phys. Lett., 11, 77-79(1967).

    [2] J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, R. Spolaczyk, K. Merkel. Digital wave-front measuring interferometry: some systematic error sources. Appl. Opt., 22, 3421-3432(1983).

    [3] E. Cuche, P. Marquet, C. Depeursinge. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Appl. Opt., 39, 4070-4075(2000).

    [4] B. Kemper, G. von Bally. Digital holographic microscopy for live cell applications and technical inspection. Appl. Opt., 47, A52-A61(2008).

    [5] P. Gao, B. Yao, N. Lindlein, K. Mantel, I. Harder, E. Geist. Phase-shift extraction for generalized phase-shifting interferometry. Opt. Lett., 34, 3553-3555(2009).

    [6] M. Born, E. Wolf. Principles of Optics(1999).

    [7] A. Faridian, D. Hopp, G. Pedrini, U. Eigenthaler, M. Hirscher, W. Osten. Nanoscale imaging using deep ultraviolet digital holographic microscopy. Opt. Express, 18, 14159-14164(2010).

    [8] V. Micó, C. Ferreira, J. García. Surpassing digital holography limits by lensless object scanning holography. Opt. Express, 20, 9382-9395(2012).

    [9] F. Le Clerc, M. Gross, L. Collot. Synthetic-aperture experiment in the visible with on-axis digital heterodyne holography. Opt. Lett., 26, 1550-1552(2001).

    [10] L. Granero, V. Micó, Z. Zalevsky, J. García. Superresolution imaging method using phase-shifting digital lensless Fourier holography. Opt. Express, 17, 15008-15022(2009).

    [11] M. Paturzo, P. Ferraro. Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography. Opt. Lett., 34, 3650-3652(2009).

    [12] M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, P. Ferraro. Super-resolution in digital holography by a two-dimensional dynamic phase grating. Opt. Express, 16, 17107-17118(2008).

    [13] C. J. Schwarz, Y. Kuznetsova, S. R. J. Brueck. Imaging interferometric microscopy. Opt. Lett., 28, 1424-1426(2003).

    [14] S. A. Alexandrov, T. R. Hillman, T. Gutzler, D. D. Sampson. Synthetic aperture Fourier holographic optical microscopy. Phys. Rev. Lett., 97, 168102(2006).

    [15] V. Mico, Z. Zalevsky, J. García. Superresolution optical system by common-path interferometry. Opt. Express, 14, 5168-5177(2006).

    [16] C. Yuan, G. Situ, G. Pedrini, J. Ma, W. Osten. Resolution improvement in digital holography by angular and polarization multiplexing. Appl. Opt., 50, B6-B11(2011).

    [17] L. Granero, Z. Zalevsky, V. Micó. Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array. Opt. Lett., 36, 1149-1151(2011).

    [18] Y. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, M.-S. Feld. Speckle-field digital holographic microscopy. Opt. Express, 17, 12285-12292(2009).

    [19] M. G. L. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 198, 82-87(2000).

    [20] M. G. L. Gustafsson. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA, 102, 13081-13086(2005).

    [21] A.-A. Mudassar, A. Hussain. Super-resolution of active spatial frequency heterodyning using holographic approach. Appl. Opt., 49, 3434-3441(2010).

    [22] A. Hussain, A.-A. Mudassar. Holography based super resolution. Opt. Commun., 285, 2303-2310(2012).

    [23] J. Ma, C. Yuan, G. Situ, G. Pedrini, W. Osten. Resolution enhancement in digital holographic microscopy with structured illumination. Chin. Opt. Lett., 11, 090901(2013).

    [24] P. Gao, G. Pedrini, W. Osten. Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy. Opt. Lett., 38, 1328-1330(2013).

    [25] W. Osten, N. Reingand. Optical Imaging and Metrology(2010).

    [26] K. Lee, H.-D. Kim, K. Kim, Y. Kim, T. R. Hillman, B. Min, Y. Park. Synthetic Fourier transform light scattering. Opt. Express, 21, 22453-22463(2013).

    [27] R. Hillman, T. Gutzler, S. A. Alexandrov, D. D. Sampson. High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy. Opt. Express, 17, 7873-7892(2009).

    CLP Journals

    [1] Yuan Hong, Tielin Shi, Yichun Zhang, Guanglan Liao, "Fringe contrast enhancement of digital off-axis hologram via sparse representation," Chin. Opt. Lett. 14, 060901 (2016)

    Juanjuan Zheng, Peng Gao, Baoli Yao, Tong Ye, Ming Lei, Junwei Min, Dan Dan, Yanlong Yang, and Shaohui Yan, "Digital holographic microscopy with phase-shift-free structured illumination," Photonics Res. 2, 87 (2014)
    Download Citation