• Chinese Journal of Lasers
  • Vol. 47, Issue 3, 301005 (2020)
Zhang Chong1、2, Hu Jingpei1、2, Zhou Ruyi1、2, Liu Tiecheng1、2, Sergey Avakaw3, Zeng Aijun1、2, and Huang Huijie1、2
Author Affiliations
  • 1Laboratory of Information Optics and Optoelectronic Technology, Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences, Shanghai 201800, China
  • 2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Company of KBTEM-OMO Republication Unitary Scientific and Production Enterprise, Minsk 220033, Belarus
  • show less
    DOI: 10.3788/CJL202047.0301005 Cite this Article Set citation alerts
    Zhang Chong, Hu Jingpei, Zhou Ruyi, Liu Tiecheng, Sergey Avakaw, Zeng Aijun, Huang Huijie. Design and Analysis of Inverse Polarization Grating Devices for Deep Ultraviolet Light[J]. Chinese Journal of Lasers, 2020, 47(3): 301005 Copy Citation Text show less
    References

    [1] Soufli R, Hudyma R M, Spiller E et al. Sub-diffraction-limited multilayer coatings for the 0.3 numerical aperture micro-exposure tool for extreme ultraviolet lithography[J]. Applied Optics, 46, 3736-3746(2007).

    [2] Naulleau P P, Denham P E, Hoef B et al. A design study for synchrotron-based high-numerical-aperture scanning illuminators[J]. Optics Communications, 234, 53-62(2004).

    [3] Yuan Q Y, Wang X Z, Qiu Z C. Impact of polarized illumination on high NA imaging in ArF immersion lithography at 45 nm node[J]. Optik, 120, 325-329(2009).

    [4] Jiang J H, Li Y Q, Shen S H et al. Design of a high-numerical-aperture extreme ultraviolet lithography illumination system[J]. Applied Optics, 57, 5673-5679(2018).

    [5] Zhu B E, Li S K, Wang X Z et al. High-order aberration measurement technique for immersion lithography projection lens based on multi-polarized illuminations[J]. Acta Optica Sinica, 38, 0712004(2018).

    [6] Fellows N N, Sato H, Lin Y D et al. Dichromatic color tuning with InGaN-based light-emitting diodes[J]. Applied Physics Letters, 93, 121112(2008).

    [7] Ren H W, Fan Y H, Wu S T. Prism grating using polymer stabilized nematic liquid crystal[J]. Applied Physics Letters, 82, 3168-3170(2003).

    [8] Soares L L, Cescato L. Metallized photoresist grating as a polarizing beam splitter[J]. Applied Optics, 40, 5906-5910(2001).

    [9] Dai M, Wan W W, Zhu X Y et al. Broadband and wide angle infrared wire-grid polarizer[J]. Optics Express, 23, 15390-15397(2015).

    [10] Yang Z Y, Lu Y F. Broadband nanowire-grid polarizers inultraviolet-visible-near-infrared regions[J]. Optics Express, 15, 9510-9519(2007).

    [11] Wang J J, Walters F, Liu X M et al. High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids[J]. Applied Physics Letters, 90, 061104(2007).

    [12] Weber T, Käsebier T, Szeghalmi A et al. Iridium wire grid polarizer fabricated using atomic layer deposition[J]. Nanoscale Research Letters, 6, 558(2011).

    [13] Weber T, Käsebier T, Helgert M et al. Tungsten wire grid polarizer for applications in the DUV spectral range[J]. Applied Optics, 51, 3224-3227(2012).

    [14] Drauschke A, Schnabel B, Wyrowski F. Comment on the inverse polarization effect in metal-stripe polarizers[J]. Journal of Optics A: Pure and Applied Optics, 3, 67-71(2001).

    [15] Honkanen M. KettunenV, Kuittinen M, et al. Inverse metal-stripe polarizers[J]. Applied Physics B: Lasers and Optics, 68, 81-85(1999).

    [16] Kang G G, Vartiainen I, Bai B F et al. Inverse polarizing effect of subwavelength metallic gratings in deep ultraviolet band[J]. Applied Physics Letters, 99, 071103(2011).

    [17] Kang G, Rahomäki J, Dong J et al. Enhanced deep ultraviolet inverse polarization transmission through hybrid Al-SiO2 gratings[J]. Applied Physics Letters, 103, 131110(2013).

    [18] Raether H. Surface plasmons on smooth and rough surfaces and on gratings[M]. Berlin, Heidelberg:Springer(1988).

    [19] Drauschke A, Schnabel B, Wyrowski F. Comment on the inverse polarization effect in metal-stripe polarizers[J]. Journal of Optics A: Pure and Applied Optics, 3, 67-71(2001).

    [20] He Q H, Wang G P. Physical mechanism for transmission enhancement of one-dimensional metallic gratings[J]. Laser Journal, 24, 29-30(2003).

    [21] Yu Z, Liang R S, Chen P X et al. Integrated tunable optofluidics optical filter based on MIM side-coupled-cavity waveguide[J]. Plasmonics, 7, 603-607(2012).

    [22] Wang Z W, Chu J K, Wang Q Y. Transmission analysis of single layer sub-wavelength metal gratings[J]. Acta Optica Sinica, 35, 0705002(2015).

    [23] Huang C P, Wang Q J, Zhu Y Y. Dual effect of surface plasmons in light transmission through perforated metal films[J]. Physical Review B, 75, 245421(2007).

    CLP Journals

    [1] YANG Jiangtao, WANG Jianan, WANG Yin, HU Xiao. Fabrication Technology of a Subwavelength Metal Grating Polarizer[J]. Infrared Technology, 2021, 43(1): 8

    Zhang Chong, Hu Jingpei, Zhou Ruyi, Liu Tiecheng, Sergey Avakaw, Zeng Aijun, Huang Huijie. Design and Analysis of Inverse Polarization Grating Devices for Deep Ultraviolet Light[J]. Chinese Journal of Lasers, 2020, 47(3): 301005
    Download Citation