• Journal of the Chinese Ceramic Society
  • Vol. 51, Issue 1, 133 (2023)
ZHENG Jiahong* and SHEN Jiajun
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.14062/j.issn.0454-5648.20220668 Cite this Article
    ZHENG Jiahong, SHEN Jiajun. Glutathione-Assisted Hydrothermal Synthesis and Electrochemical Performance of NiCo2S4 Electrode Material[J]. Journal of the Chinese Ceramic Society, 2023, 51(1): 133 Copy Citation Text show less
    References

    [1] GUAN B, LI Y, YIN B Y, et al. Synthesis of hierarchical NiS microflowers for high performance asymmertric supercapacitor[J]. Chem Eng J, 2017, 308: 1165?1173.

    [2] CHEN H C, JIANG J J, ZHANG L, et al. Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors[J]. Nanoscale, 2013, 5(19): 8879?8883.

    [3] DONG L B, XU C J, LI Y, et al. Flexible electrodes and supercapacitors for wearable energy storage: A review by category[J]. J Mater Chem A, 2016, 4(13): 4659?4685.

    [4] YANG J Q, DUAN X C, QIN Q, et al. Solvothermal synthesis of hierarchical flower-like β-NiS with excellent electrochemical performance for supercapacitors[J]. J Mater Chem A, 2013, 1(27): 7880?7884.

    [5] PANG H, WEI C Z, ZHANG J S, et al. Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H2 production[J]. Sci Rep, 2014, 4: 3577.

    [6] YU L, ZHANG L, WU H B, et al. Formation of NixCo3?xS4 hollow nanoprisms with enhanced pseudocapacitive properties[J]. Angew Chem Int Ed, 2014, 126(14): 3711?3714.

    [7] YU J H, GAO X L, CUI Z X, et al. Facile synthesis of binary transition metal sulfide tubes derived from NiCo-MOF-74 for high performance supercapacitors[J]. Energy Techn, 2019, 7(6): 1900018.

    [8] TENG W A, HAI C, FENG Y, et al. Boosting the cycling stability of transition metal compounds-based supercapacitors[J]. Energy Storage Mater, 2019, 16: 545?573.

    [9] ZHAN G W, ZENG H C. Hydrogen spillover through matryoshka-type (ZIFs@)n?1 ZIFs nanocubes[J]. Nat Commun, 2018, 9: 3778.

    [10] WANG C, WANG F X, LIU Z C, et al. N-doped carbon hollow microspheres for metal-free quasi-solid-state full sodium-ion capacitors[J]. Nano Energy, 2017, 41: 674?680.

    [11] BIN D S, CHI Z X, LI Y T, et al. Controlling the compositional chemistry in single nanoparticles for functional hollow carbon nanospheres[J]. J Am Chem Soc, 2017, 139(38): 13492?13498.

    [12] WANG J Y, TANG H J, REN H, et al. pH-regulated synthesis of multi-shelled manganese oxide hollow microspheres as supercapacitor electrodes using carbonaceous microspheres as templates[J]. Adv Sci, 2014, 1(1): 1719?1720.

    [14] WEI C Z, CHENG C, CHENG Y Y, et al. Comparison of NiS2 and alpha-NiS hollow spheres for supercapacitors, non-enzymatic glucose sensors and water treatment[J]. Dalton Trans, 2015, 44(39): 17278? 17285.

    [16] YU L, WU H B, LOU X W. Self-templated formation of hollow structures for electrochemical energy applications[J]. Acc Chem Res, 2017, 50: 293?301.

    [17] HAN Q, CHEN J S, LIU K, et al. Hydrogen evolution reaction of the electrodeposited amorphous Ni-S-Co alloy in alkaline medium[J]. Acta Metal Sin, 2004, 40(1): 331?336.

    [18] LIU J H, LIU H X, LI Y, et al. Probing the coordination properties of glutathione with transition metal ions (Cr2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+) by density functional theory[J]. J Biolog Phys, 2014, 40(4): 313?323.

    [19] LI C L, YUAN J , HAN B Y, et al. Synthesis and photochemical performance of morphology-controlled CdS photocatalysts for hydrogen evolution under visible light[J]. Int J Hydrog Energy, 2011, 36(7): 4271?4279.

    [21] ZHENG Y H, YAO C, WANG Y S, et al. Metastable γ-MnS hierarchical architectures: ?Synthesis, characterization, and growth mechanism[J]. J Phys Chem B, 2006 110(16): 8284?9289.

    [22] LI B X, RONG G X, XIE Y, et al. Low-temperature synthesis of α-MnO2 hollow urchins and their application in rechargeable Li+ batteries[J]. Inorg Chem, 2006, 45(16): 6404?6410.

    [23] WANG J H, ZHENG Y H, LIANG X H, et al. P-doped NiCo2S4 nanotubes as battery-type electrodes for high-performance asymmetric supercapacitors[J]. Dalton T, 2018, 47(26): 8771?8778.

    [24] ZHANG X Z, SHANG C Q, WANG X. Constructing Co3S4 nanosheets coating N-doped carbon nanofibers as freestanding sulfur host for high-performance lithium sulfur batteries[J]. Adv Sci, 2020, 7(22): 2002037.

    [26] WU X K, WANG Z C, HAN Y, et al. Chemically coupled NiCoS/C nanocages as efficient electrocatalysts for nitrogen reduction reactions[J]. J Mater Chem A, 2020(8): 543?547.

    [27] WAN H, JIANG J, YU J, et al. NiCo2S4 porous nanotubes synthesis via sacrificial templates: High-performance electrode materials of supercapacitors[J]. Cryst Eng Commun, 2013, 15(38): 7649?7651.

    [28] ZHOU Y, JIA Z X, ZHAO S Y, et al. Construction of triple-shelled hollow nanostructure by confining amorphous Ni-Co-S/crystalline MnS on/in hollow carbon nanospheres for all-solid-state hybrid supercapacitors[J]. Chem Eng J, 2021, 416(11): 129500.

    [29] RAJU G, PAVITRA E, NAGARAJU G, et al. Rational design of forest-like nickel sulfide hierarchical architectures with ultrahigh areal capacity as a binder-free cathode material for hybrid supercapacitors[J]. J Mater Chem A, 2018, 27: 13178?13190.

    [30] BREZESINSKI T, WANG J, POLLEUX J, et al. Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors[J]. J Am Chem Soc, 2009, 131(8): 1802?1809.

    [31] CHENG J W, LIN L Y, HONG W L, et al. Rational design of nickel cobalt sulfide/cobalt sulfide sheet-on-sheet structure for asymmetric supercapacitors[J]. Electrochim Acta, 2018, 283: 1245?1252.

    [32] SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nat Mater, 2008, 7(11): 845.

    [33] HAN X R, CHEN Q, ZHANG H, et al. Template synthesis of NiCo2S4/Co9S8 hollow spheres for high-performance asymmetric supercapacitors[J]. Chem Eng J, 2019, 368: 513?524.

    [34] BREDAR A, CHOWN A L, BURTON A R, et al. Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications[J]. ACS Appl Energy Mater, 2020, 3(1): 66?98.

    [35] LI T, LI G, LI L, et al. Large-scale self-assembly of 3D flower-like hierarchical Ni/Co-LDHs microspheres for high-performance flexible asymmetric supercapacitors[J]. ACS Appl Mater Interfaces, 2016, 8(4): 2562?2572.

    [36] CAI D, LIU B, WANG D, et al. Enhanced performance of supercapacitors with ultrathin mesoporous NiMoO4 nanosheets[J]. Electrochim Acta, 2014, 125(12): 294?301.

    [37] CHENG Q, TANG J , SHINYA N, et al. Polyaniline modified graphene and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density[J]. J Power Sources, 2013, 241(1): 423?428.

    [38] ZHENG Y, WANG X, ZHAO X, et al. Phytic acid-assisted synthesis of ultrafine NiCo2S4 nanoparticles immobilized on reduced graphene oxide as highperformance electrode for hybrid supercapacitors[J]. Chem Eng J, 2018, 333: 603?612.

    [39] XIONG X, WALLER G, DING D, et al. Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high- performance pseudocapacitors[J]. Nano Energy, 2015, 16: 71?80.

    [40] HOU L R, HUA H, BAO R Q, et al. Anion-exchange formation of hollow NiCo2S4 nanoboxes from mesocrystalline nickel cobalt carbonate nanocubes towards enhanced pseudocapacitive properties[J]. ChemPlusChem, 2016, 81(6): 557?563.

    [41] CHEN H, JIANG J, ZHANG L, et al. In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: Maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance[J]. J Power Sources, 2014, 254: 249?257.

    [42] WEI K, LU C, WU Z, et al. Homogeneous core?shell NiCo2S4 nanostructures supported on nickel foam for supercapacitors[J]. J Mater Chem A, 2015, 3: 12452?12460.

    ZHENG Jiahong, SHEN Jiajun. Glutathione-Assisted Hydrothermal Synthesis and Electrochemical Performance of NiCo2S4 Electrode Material[J]. Journal of the Chinese Ceramic Society, 2023, 51(1): 133
    Download Citation