[1] OKUMURA H. Present status and future prospect of widegap semiconductor high-power devices[J]. Jpn J Appl Phys, 2006, 45(10R): 7565.
[2] HU F, XIE Z P, ZHANG J, et al. Promising high-thermal-conductivity substrate material for high-power electronic device: Silicon nitride ceramics[J]. Rare Mat, 2020, 39(5): 463-478.
[3] ZHUANG Y H, SUN F, ZHOU L J, et al. The influence of magnesium compounds on the properties of silicon nitride ceramics[J]. Int J Appl Ceram Technol, 2024, 21(3): 2273-2287.
[4] XIANG H M, FENG Z H, LI Z P, et al. Theoretical predicted high-thermal-conductivity cubic Si3N4 and Ge3N4: Promising substrate materials for high-power electronic devices[J]. Sci Rep, 2018, 8(1): 14374.
[5] NAKASHIMA Y, ZHOU Y, TANABE K, et al. Effects of nitrogen pressure on properties of sintered reaction-bonded silicon nitride[J]. Int J Appl Ceram Technol, 2023, 20(6): 3376-3384.
[6] FURUYA K, MUNAKATA F, MATSUO K, et al. Microstructural control of -silicon nitride ceramics to improve thermal conductivity[J]. J Therm Anal Calorim, 2002, 69(3): 873-879.
[7] SHEN Q, LIN Z J, DENG J J, et al. Effects of -Si3N4 seeds on microstructure and performance of Si3N4 ceramics in semiconductor package[J]. Materials, 2023, 16(12): 4461.
[8] GIZOWSKA M, PITEK M, PERKOWSKI K, et al. Influence of sintering conditions and nanosilicon carbide concentration on the mechanical and thermal properties of Si3N4-based materials[J]. Materials, 2023, 16(5): 2079.
[9] SLACK G A. Nonmetallic crystals with high thermal conductivity[J]. J Phys Chem Solids, 1973, 34(2): 321-335.
[10] HAGGERTY J S, LIGHTFOOT A. Opportunities for enhancing the thermal conductivities of SiC and Si3N4 ceramics through improved processing[M]//Ceramic Engineering and Science Proceedings. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008: 475-487.
[11] WATARI K, LI B C, POTTIER L, et al. Thermal conductivity of -Si3N4 single crystal[J]. Key Eng Mater, 2000, 181-182: 239-242
[12] KRSTIC Z, KRSTIC V D. Silicon nitride: The engineering material of the future[J]. J Mater Sci, 2012, 47(2): 535-552.
[13] RILEY F L. Silicon nitride and related materials[J]. J Am Ceram Soc, 2000, 83(2): 245-265.
[14] HARDIE D, JACK K H. Crystal structures of silicon nitride[J]. Nature, 1957, 180: 332-333.
[15] WANG C M, PAN X Q, RHLE M, et al. Silicon nitride crystal structure and observations of lattice defects[J]. J Mater Sci, 1996, 31(20): 5281-5298.
[16] HAMPSHIRE S. Silicon nitride ceramics-Review of structure, processing and properties[J]. J Achiev Mater Manuf Eng, 2007, 24(1): 43-50.
[17] NARITA K, MORI K J. Crystal structures of silicon nitride[J]. Bull Chem Soc Jpn, 1959, 32(4): 417-419.
[18] HAMPSHIRE S. Silicon nitride ceramics[J]. Mater Sci Forum, 2008, 606: 27-41.
[19] PETZOW G, HERRMANN M. Silicon nitride ceramics[M]//JANSEN M, ed. Structure and Bonding. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002: 147-167.
[20] GRN R. The crystal structure of -Si3N4: Structural and stability considerations between - and -Si3N4[J]. Acta Crystallogr B Struct Crystallogr Cryst Chem, 1979, 35(4): 800-804.
[21] SARIN V K. On the -to- phase transformation in silicon nitride[J]. Mater Sci Eng A, 1988, 105-106: 151-159.
[22] HIROSAKI N, OGATA S, KOCER C, et al. Molecular dynamics calculation of the ideal thermal conductivity of single-crystal -and -Si3N4[J]. Phys Rev B, 2002, 65(13): 134110.
[23] LI Y, DUAN X L, FU Z W, et al. Intrinsic electron mobility and lattice thermal conductivity of -Si3N4 from first-principles[J]. Solid State Commun, 2023, 361: 115066.
[24] HIRAO K, WATARI K, HAYASHI H, et al. High thermal conductivity silicon nitride ceramic[J]. MRS Bull, 2001, 26(6): 451-455.
[25] WATARI K, HIRAO K, TORIYAMA M, et al. Effect of grain size on the thermal conductivity of Si3N4[J]. J Am Ceram Soc, 1999, 82(3): 777-779.
[26] YOKOTA H, IBUKIYAMA M. Microstructure tailoring for high thermal conductivity of -Si3N4 ceramics[J]. J Am Ceram Soc, 2003, 86(1): 197-199.
[27] YOKOTA H, IBUKIYAMA M. Effect of the addition of -Si3N4 nuclei on the thermal conductivity of -Si3N4 ceramics[J]. J Eur Ceram Soc, 2003, 23(8): 1183-1191.
[28] YOKOTA H, ABE H, IBUKIYAMA M. Effect of lattice defects on the thermal conductivity of -Si3N4[J]. J Eur Ceram Soc, 2003, 23(10): 1751-1759.
[29] KITAYAMA M, HIRAO K, TSUGE A, et al. Thermal conductivity of -Si3N4: II, effect of lattice oxygen[J]. J Am Ceram Soc, 2000, 83(8): 1985-1992.
[30] AMMAR M M, GHARIB S, HALAWA M M, et al. Thermal conductivity of some silicate glasses in relation to composition and structure[J]. J Non Cryst Solids, 1982, 53(1/2): 165-172.
[31] WASANAPIARNPONG T, WADA S, IMAI M, et al. Thermal conductivity improvement by heat-treatment in Si3N4 ceramics using SiO2-MgO-Y2O3 additive system[J]. Key Eng Mater, 2007, 352: 233-238.
[32] KITAYAMA M, HIRAO K, TORIYAMA M, et al. Thermal conductivity of -Si3N4: I, effects of various microstructural factors[J]. J Am Ceram Soc, 1999, 82(11): 3105-3112.
[33] ZHU X W, ZHOU Y, HIRAO K, et al. Potential use of only Yb2O3 in producing dense Si3N4 ceramics with high thermal conductivity by gas pressure sintering[J]. Sci Technol Adv Mater, 2010, 11(6): 065001.
[34] LIU X L, PENG M M, NING X S, et al. Effect of -Si3N4 powder on thermal conductivity of silicon nitride ceramics[J]. Key Eng Mater, 2015, 655: 11-16.
[35] TSAO G T N. Thermal conductivity of two-phase materials[J]. Ind Eng Chem, 1961, 53(5): 395-397.
[36] HIROSAKI N, OKAMOTO Y, ANDO M, et al. Thermal conductivity of gas-pressure-sintered silicon nitride[J]. J Am Ceram Soc, 1996, 79(11): 2878-2882.
[37] YOKOTA H, YAMADA S, IBUKIYAMA M. Effect of large -Si3N4 particles on the thermal conductivity of -Si3N4 ceramics[J]. J Eur Ceram Soc, 2003, 23(8): 1175-1182.
[38] IMAMURA H, KAWATA T, HONDA S, et al. Thermal conductivity improvement in silicon nitride ceramics via grain purification[J]. J Am Ceram Soc, 2024, 107(2): 1159-1169.
[39] DE PABLOS A, OSENDI M I, MIRANZO P. Effect of microstructure on the thermal conductivity of hot-pressed silicon nitride materials[J]. J Am Ceram Soc, 2002, 85(1): 200-206.
[40] WANG W D, PAN Y, ZENG Y P, et al. Effect of sintering aids content and powder characteristics on gas pressure sintered Si3N4 ceramics[J]. Ceram Int, 2024, 50(5): 8260-8268.
[41] ZIEGLER G, HEINRICH J, WTTING G. Relationships between processing, microstructure and properties of dense and reaction-bonded silicon nitride[J]. J Mater Sci, 1987, 22(9): 3041-3086.
[42] KUSANO D, ADACHI S, TANABE G, et al. Effects of impurity oxygen content in raw Si powder on thermal and mechanical properties of sintered reaction-bonded silicon nitrides[J]. Int J Appl Ceram Technol, 2012, 9(2): 229-238.
[43] ZHU X W, ZHOU Y, HIRAO K, et al. Processing and thermal conductivity of sintered reaction-bonded silicon nitride. I: Effect of Si powder characteristics[J]. J Am Ceram Soc, 2006, 89(11): 3331-3339.
[44] GOLLA B R, KO J W, KIM J M, et al. Effect of particle size and oxygen content of Si on processing, microstructure and thermal conductivity of sintered reaction bonded Si3N4[J]. J Alloys Compd, 2014, 595(15): 60-66.
[45] PARK Y J, PARK M J, KIM J M, et al. Sintered reaction-bonded silicon nitrides with high thermal conductivity: The effect of the starting Si powder and Si3N4 diluents[J]. J Eur Ceram Soc, 2014, 34(5): 1105-1113.
[46] LIU D M, CHEN C J, LEE R R R. Thermal diffusivity/conductivity in SiAlON ceramics[J]. J Appl Phys, 1995, 77(2): 494-496.
[47] KUSANO D, HYUGA H, ZHOU Y, et al. Effect of aluminum content on mechanical properties and thermal conductivities of sintered reaction-bonded silicon nitride[J]. Int J Appl Ceram Technol, 2014, 11(3): 534-542.
[48] OH H M, LEE H K. Controlling the width of particle size distribution of Si powder and properties of sintered reaction-bonded silicon nitride (SRBSN) ceramics with high thermal conductivity[J]. Ceram Int, 2020, 46(8): 12517-12524.
[49] GO S I, LI Y S, KO J W, et al. Microstructure and thermal conductivity of sintered reaction-bonded silicon nitride: The particle size effects of MgO additive[J]. Adv Mater Sci Eng, 2018, 2018: 4263497.
[50] KITAYAMA M, HIRAO K, TSUGE A, et al. Oxygen content in -Si3N4 crystal lattice[J]. J Am Ceram Soc, 1999, 82(11): 3263-3265.
[51] HIROSAKI N, OKAMOTO Y, MUNAKATA F, et al. Effect of seeding on the thermal conductivity of self-reinforced silicon nitride[J]. J Eur Ceram Soc, 1999, 19(12): 2183-2187.
[52] LEE H M, TATAMI J, KIM D K. Microstructural evolution of Si3N4 ceramics from starting powders with different -to- ratios[J]. J Ceram Soc Japan, 2016, 124(8): 800-807.
[53] KONG J H, MA H J, JUNG W K, et al. Self-reinforced and high-thermal conductivity silicon nitride by tailoring - phase ratio with pressureless multi-step sintering[J]. Ceram Int, 2021, 47(9): 13057-13064.
[56] KITAYAMA M, HIRAO K, WATARI K, et al. Thermal conductivity of -Si3N4: III, effect of rare-earth (RE = La, Nd, Gd, Y, Yb, and Sc) oxide additives[J]. J Am Ceram Soc, 2001, 84(2): 353-358.
[57] LIU W, TONG W X, LU X X, et al. Effects of different types of rare earth oxide additives on the properties of silicon nitride ceramic substrates[J]. Ceram Int, 2019, 45(9): 12436-12442.
[58] DUAN Y S, LIU N, ZHANG J X, et al. Cost effective preparation of Si3N4 ceramics with improved thermal conductivity and mechanical properties[J]. J Eur Ceram Soc, 2020, 40(2): 298-304.
[59] ZHU X W, ZHOU Y, HIRAO K. Effect of sintering additive composition on the processing and thermal conductivity of sintered reaction-bonded Si3N4[J]. J Am Ceram Soc, 2004, 87(7): 1398-1400.
[60] LEE H M, LEE E B, KIM D L, et al. Comparative study of oxide and non-oxide additives in high thermal conductive and high strength Si3N4 ceramics[J]. Ceram Int, 2016, 42(15): 17466-17471.
[62] LIANG Z H, LI J, GUI L C, et al. The role of MgSiN2 during the sintering process of silicon nitride ceramic[J]. Ceram Int, 2013, 39(4): 3817-3822.
[64] HAYASHI H, HIRAO K, TORIYAMA M, et al. MgSiN2 addition as a means of increasing the thermal conductivity of -silicon nitride[J]. J Am Ceram Soc, 2001, 84(12): 3060-3062.
[66] HU F, ZHU T B, XIE Z P, et al. Effect of composite sintering additives containing non-oxide on mechanical, thermal and dielectric properties of silicon nitride ceramics substrate[J]. Ceram Int, 2021, 47(10): 13635-13643.
[67] ZHU X W, ZHOU Y, HIRAO K, et al. Processing and thermal conductivity of sintered reaction-bonded silicon nitride: (II) effects of magnesium compound and yttria additives[J]. J Am Ceram Soc, 2007, 90(6): 1684-1692.
[68] LIANG H Q, WANG W D, ZUO K H, et al. Effect of LaB6 addition on mechanical properties and thermal conductivity of silicon nitride ceramics[J]. Ceram Int, 2020, 46(11): 17776-17783.
[69] LIANG H Q, WANG W D, ZUO K H, et al. YB2C2: A new additive for fabricating Si3N4 ceramics with superior mechanical properties and medium thermal conductivity[J]. Ceram Int, 2020, 46(4): 5239-5243.
[70] YANG C P, LIU Q, ZHANG B, et al. Effect of MgF2 addition on mechanical properties and thermal conductivity of silicon nitride ceramics[J]. Ceram Int, 2019, 45(10): 12757-12763.
[71] WANG W D, YAO D X, LIANG H Q, et al. Improved thermal conductivity of -Si3N4 ceramics through the modification of the liquid phase by using GdH2 as a sintering additive[J]. Ceram Int, 2021, 47(4): 5631-5638.
[72] WANG W D, YAO D X, LIANG H Q, et al. Improved thermal conductivity of -Si3N4 ceramics by lowering SiO2/Y2O3 ratio using YH2 as sintering additive[J]. J Am Ceram Soc, 2020, 103(10): 5567-5572.
[73] WANG W D, YAO D X, LIANG H Q, et al. Effect of the binary nonoxide additives on the densification behavior and thermal conductivity of Si3N4 ceramics[J]. J Am Ceram Soc, 2020, 103(10): 5891-5899.
[74] LI Y S, KIM H N, WU H B, et al. Enhanced thermal conductivity in Si3N4 ceramic by addition of a small amount of carbon[J]. J Euro Ceram Soc, 2019, 39(2/3): 157-164.
[75] ZHOU Y, HYUGA H, KUSANO D, et al. A tough silicon nitride ceramic with high thermal conductivity[J]. Adv Mater, 2011, 23(39): 4563-4567.
[76] ZHOU Y, HYUGA H, KUSANO D, et al. Development of high-thermal-conductivity silicon nitride ceramics[J]. J Asian Ceram Soc, 2015, 3(3): 221-229.
[77] ZHANG J, CUI W, LI F, et al. Effects of MgSiN2 addition and post-annealing on mechanical and thermal properties of Si3N4 ceramics[J]. Ceram Int, 2020, 46(10): 15719-15722.
[79] ZHU X W, SAKKA Y, ZHOU Y, et al. The effect of embedding conditions on the thermal conductivity of -Si3N4[J]. J Ceram Soc Japan, 2006, 114(1335): 1093-1096.
[80] LI Y S, KIM H N, WU H B, et al. Improved thermal conductivity of sintered reaction-bonded silicon nitride using a BN/graphite powder bed[J]. J Eur Ceram Soc, 2017, 37(15): 4483-4490.
[81] HU F, ZHU T B, XIE Z P, et al. Elimination of grain boundaries and its effect on the properties of silicon nitride ceramics[J]. Ceram Int, 2020, 46(8): 12606-12612.
[82] ZHU X W, SAKKA Y. Textured silicon nitride: Processing and anisotropic properties[J]. Sci Technol Adv Mater, 2008, 9(3): 033001.
[83] LEE F, BOWMAN K J. Texture and anisotropy in silicon nitride[J]. J Am Ceram Soc, 1992, 75(7): 1748-1755.
[84] SEABAUGH M M, KERSCHT I H, MESSING G L. Texture development by templated grain growth in liquid-phase-sintered -alumina[J]. J Am Ceram Soc, 1997, 80(5): 1181-1188.
[85] ZHANG Z, DUAN X M, QIU B F, et al. Preparation and anisotropic properties of textured structural ceramics: A review[J]. J Adv Ceram, 2019, 8(3): 289-332.
[86] ZHU X W, SAKKA Y, SUZUKI T S, et al. The c-axis texturing of seeded Si3N4 with -Si3N4 whiskers by slip casting in a rotating magnetic field[J]. Acta Mater, 2010, 58(1): 146-161.
[87] HIRAO K, WATARI K, BRITO M E, et al. High thermal conductivity in silicon nitride with anisotropie microstructure[J]. J Am Ceram Soc, 1996, 79(9): 2485-2488.
[88] WATARI K, HIRAO K, BRITO M E, et al. Hot isostatic pressing to increase thermal conductivity of Si3N4 ceramics[J]. J Mater Res, 1999, 14(4): 15.
[89] OKAMOTO Y, HIROSAKI N, ANDO M, et al. Thermal conductivity of self-reinforced silicon nitride containing large grains aligned by extrusion pressing[J]. J Ceram Soc Japan, 1997, 105(1223): 631-633.
[90] ZHU X W, SAKKA Y, ZHOU Y, et al. A strategy for fabricating textured silicon nitride with enhanced thermal conductivity[J]. J Eur Ceram Soc, 2014, 34(10): 2585-2589.