• Photonics Research
  • Vol. 1, Issue 1, 28 (2013)
Jiafang Li*, Honglian Guo, and Zhi-Yuan Li
Author Affiliations
  • Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • show less
    DOI: 10.1364/PRJ.1.000028 Cite this Article Set citation alerts
    Jiafang Li, Honglian Guo, Zhi-Yuan Li. Microscopic and macroscopic manipulation of gold nanorod and its hybrid nanostructures [Invited][J]. Photonics Research, 2013, 1(1): 28 Copy Citation Text show less
    References

    [1] E. Hutter, J. H. Fendler. Exploitation of localized surface plasmon resonance. Adv. Mater., 16, 1685-1706(2004).

    [2] K. A. Willets, R. P. Van Duyne. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 58, 267-297(2007).

    [3] Z. Y. Li. Nanophotonics in China: overviews and highlights. Front. Phys., 7, 601-631(2012).

    [4] S. Nie, S. R. Emory. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 275, 1102-1106(1997).

    [5] M. Hu, H. Petrova, A. R. Sekkinen, J. Chen, J. M. McLellan, Z.-Y. Li, M. Marquez, X. Li, Y. Xia, G. V. Hartland. Optical properties of Au–Ag nanoboxes studied by single nanoparticle spectroscopy. J. Phys. Chem. B, 110, 19923-19928(2006).

    [6] M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, Y. N. Xia. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev., 35, 1084-1094(2006).

    [7] X. H. Huang, S. Neretina, M. A. El-Sayed. Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv. Mater., 21, 4880-4910(2009).

    [8] M. T. Castaneda, S. Alegret, A. Merkoci. Electrochemical sensing of DNA using gold nanoparticles. Electroanalysis, 19, 743-753(2007).

    [9] X. Li, T.-H. Lan, C.-H. Tien, M. Gu. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam. Nat. Commun., 3, 998(2012).

    [10] P. Zijlstra, J. W. M. Chon, M. Gu. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature, 459, 410-413(2009).

    [11] A. M. Funston, C. Novo, T. J. Davis, P. Mulvaney. Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett., 9, 1651-1658(2009).

    [12] J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, P. Mulvaney. Gold nanorods: synthesis, characterization and applications. Coord. Chem. Rev., 249, 1870-1901(2005).

    [13] B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater., 9, 707-715(2010).

    [14] Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Y. Shan, Q. Q. Wang, Z. Y. Zhang. Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramaticallyenhanced light emission and transmission. Nano Lett., 11, 49-55(2011).

    [15] D. J. Wu, S. M. Jiang, Y. Cheng, X. J. Liu. Fano-like resonance in symmetry-broken gold nanotube dimer. Opt. Express, 20, 26559-26567(2012).

    [16] J. S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. F. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, B. Hecht. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nat. Commun., 1, 150(2010).

    [17] J. Li, S. Liu, Y. Liu, F. Zhou, Z. Y. Li. Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods. Appl. Phys. Lett., 96, 263103(2010).

    [18] S. J. Oldenburg, R. D. Averitt, S. L. Westcott, N. J. Halas. Nanoengineering of optical resonances. Chem. Phys. Lett., 288, 243-247(1998).

    [19] B. Nikoobakht, M. A. El-Sayed. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater., 15, 1957-1962(2003).

    [20] F. Kim, J. H. Song, P. D. Yang. Photochemical synthesis of gold nanorods. J. Am. Chem. Soc., 124, 14316-14317(2002).

    [21] T. Ming, L. Zhao, Z. Yang, H. J. Chen, L. D. Sun, J. F. Wang, C. H. Yan. Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods. Nano Lett., 9, 3896-3903(2009).

    [22] X. Li, F. J. Kao, C. C. Chuang, S. L. He. Enhancing fluorescence of quantum dots by silica-coated gold nanorods under one- and two-photon excitation. Opt. Express, 18, 11335-11346(2010).

    [23] S. Y. Liu, J. F. Li, F. Zhou, L. Gan, Z. Y. Li. Efficient surface plasmon amplification from gain-assisted gold nanorods. Opt. Lett., 36, 1296-1298(2011).

    [24] D. J. Bergman, M. I. Stockman. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett., 90, 027402(2003).

    [25] J. A. Gordon, R. W. Ziolkowski. The design and simulated performance of a coated nano-particle laser. Opt. Express, 15, 2622-2653(2007).

    [26] X. F. Li, S. F. Yu. Design of low-threshold compact Au-nanoparticle lasers. Opt. Lett., 35, 2535-2537(2010).

    [27] N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, V. A. Fedotov. Lasing spaser. Nat. Photonics, 2, 351-354(2008).

    [28] M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner. Demonstration of a spaser-based nanolaser. Nature, 460, 1110-1112(2009).

    [29] Z. Y. Li, Y. N. Xia. Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering. Nano Lett., 10, 243-249(2010).

    [30] M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, V. A. Podolskiy. Stimulated emission of surface plasmon polaritons. Phys. Rev. Lett., 101, 226806(2008).

    [31] Y. H. Chen, J. F. Li, M. L. Ren, B. L. Wang, J. X. Fu, S. Y. Liu, Z. Y. Li. Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces. Appl. Phys. Lett., 98, 261912(2011).

    [32] Y. H. Chen, J. F. Li, M. L. Ren, Z. Y. Li. Amplified spontaneous emission of surface plasmon polaritons with unusual angle-dependent response. Small, 8, 1355-1359(2012).

    [33] M. D. Wang, H. Yin, R. Landick, J. Gelles, S. M. Block. Stretching DNA with optical tweezers. Biophys. J., 72, 1335-1346(1997).

    [34] J.-D. Wen, M. Manosas, P. T. X. Li, S. B. Smith, C. Bustamante, F. Ritort, I. Tinoco. Force unfolding kinetics of RNA using optical tweezers. I. Effects of experimental variables on measured results. Biophys. J., 92, 2996-3009(2007).

    [35] P. Bechtluft, R. G. H. van Leeuwen, M. Tyreman, D. Tomkiewicz, N. Nouwen, H. L. Tepper, A. J. M. Driessen, S. J. Tans. Direct observation of chaperone-induced changes in a protein folding pathway. Science, 318, 1458-1461(2007).

    [36] R. M. Simmons, J. T. Finer, S. Chu, J. A. Spudich. Quantitative measurements of force and displacement using an optical trap. Biophys. J., 70, 1813-1822(1996).

    [37] W. R. Bowen, A. O. Sharif. Long-range electrostatic attraction between like-charge spheres in a charged pore. Nature, 393, 663-665(1998).

    [38] W. Wen, L. Zhang, P. Sheng. Planar magnetic colloidal crystals. Phys. Rev. Lett., 85, 5464-5467(2000).

    [39] A. A. R. Neves, A. Camposeo, S. Pagliara, R. Saija, F. Borghese, P. Denti, M. A. Iatì, R. Cingolani, O. M. Maragò, D. Pisignano. Rotational dynamics of optically trapped nanofibers. Opt. Express, 18, 822-830(2010).

    [40] L. Tong, V. D. Miljković, M. Käll. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. Nano Lett., 10, 268-273(2010).

    [41] L. Ling, H. L. Guo, L. Huang, E. Qu, Z. L. Li, Z. Y. Li. The measurement of displacement and optical force in multi-optical tweezers. Chin. Phys. Lett., 29, 014214(2012).

    [42] R. A. Nome, M. J. Guffey, N. F. Scherer, S. K. Gray. Plasmonic interactions and optical forces between Au bipyramidal nanoparticle dimers. J. Phys. Chem. A, 113, 4408-4415(2009).

    [43] L. Ling, H. L. Guo, X. L. Zhong, L. Huang, J. F. Li, L. Gan, Z. Y. Li. Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control. Nanotechnology, 23, 215302(2012).

    [44] Q. Zhan. Trapping metallic Rayleigh particles with radial polarization. Opt. Express, 12, 3377-3382(2004).

    [45] J.-Q. Qin, X.-L. Wang, D. Jia, J. Chen, Y.-X. Fan, J. Ding, H.-T. Wang. FDTD approach to optical forces of tightly focused vector beams on metal particles. Opt. Express, 17, 8407-8416(2009).

    [46] A. Huss, A. M. Chizhik, R. Jäger, A. I. Chizhik, A. J. Meixner. Optical trapping of gold nanoparticles using a radially polarized laser beam. Proc. SPIE, 8097, 809720(2011).

    [47] L. Huang, H. Guo, J. Li, L. Ling, B. Feng, Z.-Y. Li. Optical trapping of gold nanoparticles by cylindrical vector beam. Opt. Lett., 37, 1694-1696(2012).

    [48] F. Peng, B. Yao, S. Yan, W. Zhao, M. Lei. Trapping of low-refractive-index particles with azimuthally polarized beam. J. Opt. Soc. Am. B, 26, 2242-2247(2009).

    [49] S. Y. Liu, J. F. Li, Z. Y. Li. Macroscopic polarized emission from aligned hybrid gold nanorods embedded in a polyvinyl alcohol film. Adv. Opt. Mater., 1, 227-231(2013).

    [50] B. M. I. van der Zande, L. Pages, R. A. M. Hikmet, A. van Blaaderen. Optical properties of aligned rod-shaped gold particles dispersed in poly(vinyl alcohol) films. J. Phys. Chem. B, 103, 5761-5767(1999).

    [51] D. Fornasiero, F. Grieser. A linear dichroism study of colloidal silver in stretched polymer-films. Chem. Phys. Lett., 139, 103-108(1987).

    [52] M. Sheikbahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Vanstryland. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron., 26, 760-769(1990).

    [53] R. West, Y. Wang, T. Goodson. Nonlinear absorption properties in novel gold nanostructured topologies. J. Phys. Chem. B, 107, 3419-3426(2003).

    [54] L. Francois, M. Mostafavi, J. Belloni, J. A. Delaire. Optical limitation induced by gold clusters: mechanism and efficiency. Phys. Chem. Chem. Phys, 3, 4965-4971(2001).

    [55] S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater., 2, 229-232(2003).

    [56] K. Kogo, T. Goda, M. Funahashi, J. Hanna. Polarized light emission from a calamitic liquid crystalline semiconductor doped with dyes. Appl. Phys. Lett., 73, 1595-1597(1998).

    [57] K. S. Whitehead, M. Grell, D. D. C. Bradley, M. Inbasekaran, E. P. Woo. Polarized emission from liquid crystal polymers. Synth. Met., 111, 181-185(2000).

    [58] M. Sukharev, T. Seideman. Phase and polarization control as a route to plasmonic nanodevices. Nano Lett., 6, 715-719(2006).

    [59] H. H. Fang, Q. D. Chen, J. Yang, H. Xia, Y. G. Ma, H. Y. Wang, H. B. Sun. Two-photon excited highly polarized and directional upconversion emission from slab organic crystals. Opt. Lett., 35, 441-443(2010).

    [60] F. Di Stasio, P. Korniychuk, S. Brovelli, P. Uznanski, S. O. McDonnell, G. Winroth, H. L. Anderson, A. Tracz, F. Cacialli. Highly polarized emission from oriented films incorporating water-soluble conjugated polymers in a polyvinyl alcohol matrix. Adv. Mater., 23, 1855-1859(2011).

    [61] C. F. Lai, J. Y. Chi, H. H. Yen, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, C. Y. Huang, W. Y. Yeh. Polarized light emission from photonic crystal light-emitting diodes. Appl. Phys. Lett., 92, 243118(2008).

    [62] S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, J. G. Rivas. Quantum rod emission coupled to plasmonic lattice resonances: a collective directional source of polarized light. Appl. Phys. Lett., 100, 111103(2012).

    [63] H. J. Chen, T. A. Ming, L. Zhao, F. Wang, L. D. Sun, J. F. Wang, C. H. Yan. Plasmon-molecule interactions. Nano Today, 5, 494-505(2010).

    [64] T. Ming, L. Zhao, H. J. Chen, K. C. Woo, J. F. Wang, H. Q. Lin. Experimental evidence of plasmophores: plasmon-directed polarized emission from gold nanorod-fluorophore hybrid nanostructures. Nano Lett., 11, 2296-2303(2011).

    CLP Journals

    [1] Yuegang Chen, Zhiyuan Li. Free space optical beam coupled to surface plasmonic polariton waves via designed grooves in metal film[J]. Chinese Optics Letters, 2015, 13(2): 020501

    [2] Bo Wang, Xian-Zhe Zeng, Zhi-Yuan Li. Quantum versus optical interaction contribution to giant spectral splitting in a strongly coupled plasmon–molecules system[J]. Photonics Research, 2020, 8(3): 343

    Jiafang Li, Honglian Guo, Zhi-Yuan Li. Microscopic and macroscopic manipulation of gold nanorod and its hybrid nanostructures [Invited][J]. Photonics Research, 2013, 1(1): 28
    Download Citation