[1] HAO X H. A review on the dielectric materials for high energy-storage application[J]. J Adv Dielect, 2013, 3(1): 1330001.
[2] OGIHARA H, RANDALL C A, TROLIER-MCKINSTRY S. Weakly coupled relaxor behavior of BaTiO3-BiScO3 ceramics[J]. J Am Ceram Soc, 2009, 92(1): 110-118.
[3] OGIHARA H, RANDALL C A, TROLIER-MCKINSTRY S. High-energy density capacitors utilizing 0.7BaTiO3-0.3BiScO3 ceramics[J]. J Am Ceram Soc, 2009, 92(8): 1719-1724.
[4] SHEN Z B, WANG X H, LUO B C, et al. BaTiO3-BiYbO3 perovskite materials for energy storage applications[J]. J Mater Chem A, 2015, 3(35): 18146-18153.
[5] LI W B, ZHOU D, PANG L X, et al. Novel Barium titanate based capacitors with high energy density and fast discharge performance[J]. J Mater Chem A, 2017, 5(37): 19607-19612.
[6] YUAN Q B, YAO F Z, WANG Y F, et al. Relaxor ferroelectric 0.9BaTiO3-0.1Bi(Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties[J]. J Mater Chem C, 2017, 5(37): 9552-9558.
[8] WANG Y L, CHEN X L, ZHOU H F, et al. Evolution of phase transformation behavior and dielectric temperature stability of BaTiO3-Bi(Zn0.5Zr0.5)O3 ceramics system[J]. J Alloys Compd, 2013, 551: 365-369.
[10] WANG T, JIN L, LI C C, et al. Relaxor ferroelectric BaTiO3-Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application[J]. J Am Ceram Soc, 2015, 98(2): 559-566.
[11] WU L W, WANG X H, SHEN Z B, et al. Ferroelectric to relaxor transition in BaTiO3-Bi(Zn2/3Nb1/3)O3 ceramics[J]. J Am Ceram Soc, 2017, 100(1): 265-275.
[12] ZEB A, MILNE S J. Temperature-stable dielectric properties from -20 ℃ to 430 ℃ in the system BaTiO3-Bi(Mg0.5Zr0.5)O3[J]. J Eur Ceram Soc, 2014, 34(13): 3159-3166.
[13] CHEN X L, CHEN J, MA D D, et al. High relative permittivity, low dielectric loss and good thermal stability of BaTiO3-Bi(Mg0.5Zr0.5)O3 solid solution[J]. Ceram Int, 2015, 41(2): 2081-2088.
[14] ZHAO X B, ZHOU Z Y, LIANG R H, et al. High-energy storage performance in lead-free (1-x)BaTiO3-xBi(Zn0.5Ti0.5)O3 relaxor ceramics for temperature stability applications[J]. Ceram Int, 2017, 43(12): 9060-9066.
[15] WU L, WANG X, LI L. Lead-free weakly coupled relaxor ferroelectric materials for energy storage[J]. RSC Advances, 2016, 6(17): 14273-14282.
[16] WEI M, ZHANG J H, WU K T, et al. Effect of BiMO3 (M=Al, In, Y, Sm, Nd, and La) doping on the dielectric properties of BaTiO3 ceramics[J]. Ceram Int, 2017, 43(13): 9593-9599.
[17] HU Q Y, JIN L, WANG T, et al. Dielectric and temperature stable energy storage properties of 0.88BaTiO3-0.12Bi(Mg1/2Ti1/2)O3 bulk ceramics[J]. J Alloys Compd, 2015, 640: 416-420.
[18] LI F, YANG K, LIU X, et al. Temperature induced high charge-discharge performances in lead-free Bi0.5Na0.5TiO3-based ergodic relaxor ferroelectric ceramics[J]. Scr Mater, 2017, 141: 15-19.
[19] SCHNEIDER G A. A Griffith type energy release rate model for dielectric breakdown under space charge limited conductivity[J]. J Mech Phys Solids, 2013, 61(1): 78-90.
[20] MALEC D, BLEY V, TALBI F, et al. Contribution to the understanding of relationship between mechanical and dielectric strengths of Alumina[J]. J Eur Ceram Soc, 2010, 30: 3117-3123.
[22] YU E K, CHEN L J, et al. Characteristics and comparison of large-scale electric energy storage technologies[J]. Zhejiang Electr Power, 2011, 12: 4-8.
[23] LIN D, QIAN P, ZHANG X S, et al. Multi-objective optimal operation strategy based on economy and flexibility of integrated energy system considering energy storage life characteristics[J]. Zhejiang Electr Power, 2022, 1: 26-34.