• Chinese Optics Letters
  • Vol. 19, Issue 12, 120201 (2021)
Henan Cheng1、2, Siminda Deng1、2, Zhen Zhang1、2, Jingfeng Xiang1, Jingwei Ji1, Wei Ren1, Tang Li1, Qiuzhi Qu1, Liang Liu1、*, and Desheng Lü1、2、**
Author Affiliations
  • 1Key Laboratory of Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/COL202119.120201 Cite this Article Set citation alerts
    Henan Cheng, Siminda Deng, Zhen Zhang, Jingfeng Xiang, Jingwei Ji, Wei Ren, Tang Li, Qiuzhi Qu, Liang Liu, Desheng Lü. Uncertainty evaluation of the second-order Zeeman shift of a transportable 87Rb atomic fountain clock[J]. Chinese Optics Letters, 2021, 19(12): 120201 Copy Citation Text show less
    References

    [1] K. Gibble, S. Lea, K. Szymaniec. 2012 Conference on Precision Electromagnetic Measurements, 700(2012).

    [2] J. Guéna, M. Abgrall, D. Rovera, P. Laurent, S. Bize. Progress in atomic fountains at LNE-SYRTE. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 59, 391(2012).

    [3] T. P. Heavner, S. R. Jefferts, E. A. Donley, J. H. Shirley, T. E. Parker. NIST-F1: recent improvements and accuracy evaluations. Metrologia, 42, 411(2005).

    [4] K. Szymaniec, S. E. Park, G. Marra, G. W. Chalupczak. First accuracy evaluation of the NPL-CsF2 primary frequency standard. Metrologia, 47, 363(2010).

    [5] K. Szymaniec, W. Chalupczak, P. B. Whibberley, S. N. Lea, D. Henderson. Evaluation of the primary frequency standard NPL-CsF1. Metrologia, 42, 49(2005).

    [6] Y. Ovchinnikov, G. Marra. Accurate rubidium atomic fountain frequency standard. Metrologia, 48, 446(2011).

    [7] R. Wynands, S. Weyers. Atomic fountain clocks. Metrologia, 42, S64(2005).

    [8] K. Szymaniec, S. N. Lea, K. Gibble, S. E. Park, K. Liu, P. G. Owacki. NPL Cs fountain frequency standards and the quest for the ultimate accuracy. J. Phys. Conf. Ser., 723, 012003(2016).

    [9] X. Wang, K. Liu, H. Cheng, W. Ren, J. Xiang, J. Ji, X. Peng, Z. Zhang, J. Zhao, M. Ye, L. Li, T. Li, B. Wang, Q. Qu, L. Liu, D. Lü. Optimization of temperature characteristics of a transportable 87Rb atomic fountain clock. Chin. Opt. Lett., 17, 080201(2019).

    [10] S. Peil, J. L. Hanssen, T. B. Swanson, J. Taylor, C. R. Ekstrom. Evaluation of long term performance of continuously running atomic fountains. Physics, 51, 263(2014).

    [11] R. Li, K. Gibble, K. Szymaniec. Improved accuracy of the NPL-CsF2 primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts. Metrologia, 48, 283(2010).

    [12] V. Gerginov, N. Nemitz, S. Weyers, R. SChrDer, D. Griebsch, R. Wynands. Uncertainty evaluation of the caesium fountain clock PTB-CSF2. Metrologia, 47, 65(2010).

    [13] J. Guéna, M. Abgrall, A. Clairon, S. Bize. Contributing to TAI with a secondary representation of the SI second. Metrologia, 51, 108(2014).

    [14] S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, F. L. Walls. Accuracy evaluation of NIST-F1. Metrologia, 39, 321(2003).

    [15] Q. Wang, N. Zhang, R. Wei, S. Zhang, Y. Wang. Precision measurements of the ground-state hyperfine splitting of 85Rb using an atomic fountain clock. Phys. Rev. A, 100, 022510(2019).

    [16] S. H. Yang, K. J. Baek, T. Y. Kwon, Y. B. Kim, H. S. Lee. Second-order Zeeman frequency shift in the optically pumped cesium beam frequency standard with a dual servo system. Jpn. J. Appl. Phys., 38, 6174(2014).

    [17] X. Wang, J. Ruan, D. Liu, G. Yong, S. G. Zhang. The study of second-order Zeeman shift of the cesium fountain clock NTSC-F1. 2016 IEEE International Frequency Control Symposium (IFCS)(2016).

    [18] C. Y. Shi, R. Wei, Z. C. Zhou, D. S. Lü, T. Li, Y. Z. Wang. Magnetic field measurement on 87Rb atomic fountain clock. Chin. Opt. Lett., 8, 549(2010).

    [19] Z. C. Zhou, R. Wei, C. Y. Shi, T. Li, Y. Z. Wang. Magnetic field measurement based on a stimulated two-photon Raman transition. Chin. Phys. B, 20, 247(2011).

    [20] R. C. Dong, R. Wei, Y. B. Du, F. Zou, J. D. Lin, Y. Z. Wang. Magnetic field measurement by weak magnetic-sensitive Zeeman splitting. Appl. Phys. Lett., 106, 152402(2015).

    [21] R. Wei, Q. C. Ji, W. J. Zhao, Y. Wang. Evaluation and suppression of the magnetic-induced Rabi broadening of magnetic-sensitive Ramsey fringes. J. Opt. Soc. Am. B, 38, 1078(2021).

    [22] G. Breit, I. I. Rabi. Measurement of nuclear spin. Phys. Rev., 38, 2082(1931).

    [23] E. Arimondo, M. Inguscio, P. Violino. Experimental determinations of the hyperfine structure in the alkali atoms. Rev. Mod. Phys., 49, 31(1977).

    Data from CrossRef

    [1] Weijing Zhao, Wang Qian, Desheng Lv, Rong Wei. Improvement of average magnetic field measurement based on magnetic-field-sensitive Ramsey fringes. Optics Letters, 47, 2073(2022).

    Henan Cheng, Siminda Deng, Zhen Zhang, Jingfeng Xiang, Jingwei Ji, Wei Ren, Tang Li, Qiuzhi Qu, Liang Liu, Desheng Lü. Uncertainty evaluation of the second-order Zeeman shift of a transportable 87Rb atomic fountain clock[J]. Chinese Optics Letters, 2021, 19(12): 120201
    Download Citation