• International Journal of Extreme Manufacturing
  • Vol. 4, Issue 4, 45101 (2022)
[in Chinese], [in Chinese], [in Chinese], and [in Chinese]*
Author Affiliations
  • Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
  • show less
    DOI: 10.1088/2631-7990/ac84b3 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Plasma-enabled electrochemical jet micromachining of chemically inert and passivating material[J]. International Journal of Extreme Manufacturing, 2022, 4(4): 45101 Copy Citation Text show less
    References

    [1] Ippolito R, Tornincasa S, Capello G and Micheletti G F 1981 Electron-jet drilling—basic involved phenomena CIRP Ann. 30 87-90

    [2] Yoneda K and Kunieda M 1995 Numerical analysis of cross sectional shape of micro-indents formed by the electrochemical jet machining (ECJM) J. Japan Soc. Electr. Mach. Eng. 29 1-8

    [3] Hackert-Oschatzchen M, Meichsner G, Zinecker M, Martin A and Schubert A 2012 Micro machining with continuous electrolytic free jet Precis. Eng. 36 612-9

    [4] Natsu W, Ikeda T and Kunieda M 2007 Generating complicated surface with electrolyte jet machining Precis. Eng. 31 33-39

    [5] Kawanaka T, Kato S, Kunieda M, Murray J W and Clare A T 2014 Selective surface texturing using electrolyte jet machining Proc. CIRP 13 345-9

    [6] Kakudo S and Kunieda M 2016 Electrolyte jet machining of difficult-to-machine materials Proc. 2016 JSPE Autumn Conf. pp 185-6

    [7] Mitchell-Smith J and Clare A T 2016 ElectroChemical jet machining of titanium: overcoming passivation layers with ultrasonic assistance Proc. CIRP 42 379-83

    [8] Liu W D, Luo Z and Kunieda M 2020 Electrolyte jet machining of Ti1023 titanium alloy using NaCl ethylene glycol-based electrolyte J. Mater. Process. Technol. 283 116731

    [9] Hackert-Oschatzchen M, Martin A, Meichsner G, Zinecker M and Schubert A 2013 Microstructuring of carbide metals applying jet electrochemical machining Precis. Eng. 37 621-34

    [10] Liu Z, Nouraei H, Spelt J K and Papini M 2015 Electrochemical slurry jet micro-machining of tungsten carbide with a sodium chloride solution Precis. Eng. 40 189-98

    [11] Masuzawa T and Kimura M 1991 Electrochemical surface finishing of tungsten carbide alloy CIRP Ann. 40 199-202

    [12] Mizugai K, Shibuya N and Kunieda M 2013 Study on electrolyte jet machining of cemented carbide Int. J. Electr. Mach. 18 23-28

    [13] Kakudo S and Kunieda M 2017 Electrolyte jet machining of materials prone to passivation Proc. 2017 JSPE Autumn Conf. pp 103-4

    [14] Kakudo S and Kunieda M 2020 Electrolyte jet machining of materials susceptible to passivation Proc. 2010 JSPE Spring Conf. pp 860-1

    [15] Kendall T, Bartolo P, Gillen D and Diver C 2019 A review of physical experimental research in jet electrochemical machining Int. J. Adv. Manuf. Technol. 105 651-67

    [16] Thangamani G, Thangaraj M, Moiduddin K, Mian S H, Alkhalefah H and Umer U 2021 Performance analysis of electrochemical micro machining of titanium (Ti-6Al-4V) alloy under different electrolytes concentrations Metals 11 247

    [17] Yerokhin A L, Nie X, Leyland A, Matthews A and Dowey S J 1999 Plasma electrolysis for surface engineering Surf. Coat. Technol. 122 73-93

    [18] Sengupta S K, Srivastava A K and Singh R 1997 Contact glow discharge electrolysis: a study on its origin in the light of the theory of hydrodynamic instabilities in local solvent vaporisation by Joule heating during electrolysis J. Electroanal. Chem. 427 23-27

    [19] Parfenov E V, Yerokhin A, Nevyantseva R R, Gorbatkov M V, Liang C J and Matthews A 2015 Towards smart electrolytic plasma technologies: an overview of methodological approaches to process modelling Surf. Coat. Technol. 269 2-22

    [20] Yerokhin A, Pilkington A and Matthews A 2010 Pulse current plasma assisted electrolytic cleaning of AISI 4340 steel J. Mater. Process. Technol. 210 54-63

    [21] Clare A T, Speidel A, Mitchell-Smith J, Bisterov I and Murray J W 2019 Surface enhanced micro features using electrochemical jet processing CIRP Ann. 68 177-80

    [22] Kranhold C, Kroning O, Schulze H P, Herzig M and Zeidler H 2020 Investigation of stable boundary conditions for the jet-electrolytic plasma polishing (Jet-ePP) Proc. CIRP 95 987-92

    [23] Morkoc H, Strite S, Gao G B, Lin M E, Sverdlov B and Burns M 1994 Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies J. Appl. Phys. 76 1363-98

    [24] Rysy S, Sadowski H and Helbig R 1999 Electrochemical etching of silicon carbide J. Solid State Electrochem. 3 437-45

    [25] Pearton S J, Douglas E A, Shul R J and Ren F 2020 Plasma etching of wide bandgap and ultrawide bandgap semiconductors J. Vac. Sci. Technol. A 38 020802

    [26] Zhao Y H, Kunieda M and Abe K 2016 EDM mechanism of single crystal SiC with respect to thermal, mechanical and chemical aspects J. Mater. Process. Technol. 236 138-47

    [27] Shor J S 1994 Photoelectrochemical etching of 6H-SiC J. Electrochem. Soc. 141 778

    [28] Chen Z J and Zhao Y H 2019 Investigation into electrochemical oxidation behavior of 4H-SiC with varying anodizing conditions Electrochem. Commun. 109 106608

    [29] Yang X, Sun R Y, Ohkubo Y, Kawai K, Arima K, Endo K and Yamamura K 2018 Investigation of anodic oxidation mechanism of 4H-SiC (0001) for electrochemical mechanical polishing Electrochim. Acta 271 666-76

    [30] Schneider M, Simunková L, Junker N and Michaelis A 2020 Quantitative detection of anodic oxygen evolution on solid state sintered silicon carbide under near ECM conditions J. Solid State Electrochem. 24 207-15

    [31] Meletis E I, Nie X, Wang F L and Jiang J C 2002 Electrolytic plasma processing for cleaning and metal-coating of steel surfaces Surf. Coat. Technol. 150 246-56

    [32] Maeda Y, Kitada A, Murase K and Fukami K 2021 High-density and low-roughness anodic oxide formed on SiC in highly concentrated LiCl aqueous solution Electrochem. Commun. 132 107138

    [33] Schneider M, Simunková L, Michaelis A, Noeske M, Aniol J and Thiel K 2021 Study of anodic oxide films formed on solid-state sintered SiC-ceramic at high anodic potentials Ceram. Int. 47 15010-6

    [34] Klapkiv M D, Nykyforchyn H M and Posuvailo V M 1995 Spectral analysis of an electrolytic plasma in the process of synthesis of aluminum oxide Mater. Sci. 30 333-43

    [35] Stojadinovic S, Vasilic R, Petkovic M, Nedic Z, Kasalica B, Belca I and Zekovic L J 2010 Luminescence properties of oxide films formed by anodization of aluminum in 12-tungstophosphoric acid Electrochim. Acta 55 3857-63

    [36] Griem H R 1964 Plasma Spectroscopy (New York: McGraw-Hill)

    [37] Griem H R 2012 Spectral Line Broadening by Plasmas (New York: Academic)

    [38] Kumagawa M, Kuwabara H and Yamada S 1969 Hydrogen etching of silicon carbide Jpn. J. Appl. Phys. 8 421-8

    [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Plasma-enabled electrochemical jet micromachining of chemically inert and passivating material[J]. International Journal of Extreme Manufacturing, 2022, 4(4): 45101
    Download Citation