• Matter and Radiation at Extremes
  • Vol. 6, Issue 5, 054404 (2021)
V. A. Astapenko1, F. B. Rosmej1、2、3、4, and E. S. Khramov1、a)
Author Affiliations
  • 1Moscow Institute of Physics and Technology (National Research University), Institutskii per. 9, 141701 Dolgoprudny, Russia
  • 2Sorbonne University, Faculty of Science and Engineering, UMR 7605, Case 128, 4 Place Jussieu, F-75252 Paris Cedex 05, France
  • 3LULI, Ecole Polytechnique, CEA, CNRS, Laboratoire pour l’Utilisation des Lasers Intenses, Physique Atomique dans les Plasmas Denses, F-91128 Palaiseau, France
  • 4National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, 115409 Moscow, Russia
  • show less
    DOI: 10.1063/5.0065835 Cite this Article
    V. A. Astapenko, F. B. Rosmej, E. S. Khramov. Scattering of ultrashort laser pulses on plasmons in a Maxwellian plasma[J]. Matter and Radiation at Extremes, 2021, 6(5): 054404 Copy Citation Text show less

    Abstract

    On the basis of equations obtained in the framework of second-order quantum-mechanical perturbation theory, the standard approach to the calculation of scattering radiation probability is extended to the case of ultrashort laser pulses. We investigate the mechanism of the appearance of plasmon peaks in the spectrum of the plasma form factor for different parameters of the problem. For the case in which scattering on plasmons dominates over scattering on electron density fluctuations caused by chaotic thermal motion, we derive analytical expressions describing the scattering probability of ultrashort laser pulses on plasmons. Together with this, we obtain a simple expression connecting the frequency of scattered radiation and the energy transmitted from the incident pulse to plasmon, and vice versa. In considering the scattering probability, our emphasis is on the dependence on the pulse duration. We assess in detail the trends of this dependence for various relations between pulse carrier frequency and plasmon energy.
    S(ω,k)=Se+Si=2πk1χeε2fe0ωk+2πZkχeε2fi0ωk.

    View in Article

    fe(i)0ωk=me(i)2πTe(i)expme(i)ω22Te(i)k2,

    View in Article

    χe=α2F(xe),

    View in Article

    χi=α2ZTeTiF(xi),

    View in Article

    F(x)=1πxexp(x2)erfi(x)+iπxexp(x2).

    View in Article

    d2wscdΩdω=d2σscdΩdωjωi.

    View in Article

    d2σsc(k,ω)dΩdω=1+cos2θ2re2S(ω,k),

    View in Article

    d2WscdΩdω=c4π20+d2σscdΩdω|E(ωi)|2ωidωi,

    View in Article

    E(ωi,ωc,τ)=iE0τπ2ωi2τ21+ωc2τ2exp(ωiωc)2τ22exp(ωi+ωc)2τ22,

    View in Article

    S(ω,k)=1emen¯eαexp(xe2)(1+α2Re{F(xe)})2+(α2Im{F(xe)})2,

    View in Article

    Re{ε}=01+(αres)2(αres)2πxresexp[(xres)2]erfi(xres)=0,

    View in Article

    Γm(xe,α)=12kπme2Te(xmres)2exp[(xmres)2](xexmres)2+12πα2(xmres)2exp[(xmres)2]2πme8neδ(xexmres)αe,

    View in Article

    γm=π4(αmresxmres)2exp[(xmres)2].

    View in Article

    xe=xmresωiωaωi2+ω22ωiωcosθ=ωimresωa(ωimres)2+ω22ωimresωcosθ.

    View in Article

    ωi1resωi2res=ω2.

    View in Article

    S(ω,k)1αeπme8ne[δ(xex1res)+δ(xex2res)]=G1δ(ωiωi1res)+G2δ(ωiωi2res),

    View in Article

    Gm=πλDαmresc1kmresc(ωimresω)(ωimresωcosθ)(kmresc)31.

    View in Article

    d2WscdΩdω=cre2(1+cos2θ)8π2×G1|E(ωi=ωi1res)|2ωi1res+G2|E(ωi=ωi2res)|2ωi2res.

    View in Article

    (ωiresω)2=ωpe2+3Te(kres)2me.

    View in Article

    V. A. Astapenko, F. B. Rosmej, E. S. Khramov. Scattering of ultrashort laser pulses on plasmons in a Maxwellian plasma[J]. Matter and Radiation at Extremes, 2021, 6(5): 054404
    Download Citation