• Chinese Journal of Lasers
  • Vol. 48, Issue 15, 1504002 (2021)
Guanhao Wu1、*, Siyu Zhou1、**, Yuetang Yang1, and Kai Ni2
Author Affiliations
  • 1State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
  • 2Division of Advanced Manufacturing, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, China
  • show less
    DOI: 10.3788/CJL202148.1504002 Cite this Article Set citation alerts
    Guanhao Wu, Siyu Zhou, Yuetang Yang, Kai Ni. Dual-Comb Ranging and Its Applications[J]. Chinese Journal of Lasers, 2021, 48(15): 1504002 Copy Citation Text show less
    References

    [1] Lim H C, Bang H. Adaptive control for satellite for mation flying under thrust misalignment[J]. Acta Astronautica, 65, 112-122(2009).

    [2] Vassar R H, Sherwood R B. Formation keeping for a pair of satellites in a circular orbit[J]. Journal of Guidance, Control, and Dynamics, 8, 235-242(1985).

    [3] Duren R M, Liebe C C. The SRTM sub-arcsecond metrology camera[C]. //2001 IEEE Aerospace Conference Proceedings, March 10-17, 2001, Big Sky, MT, USA., 2037-2046(2001).

    [4] Duren R M, Wong E, Breckenridge B et al. Metrology, attitude, and orbit determination for spaceborne interferometric synthetic aperture radar[J]. Proceedings of SPIE, 3365, 51-60(1998).

    [5] Fan K C, Li R J, Xu P. Design and verification of micro/nano-probes for coordinate measuring machines[J]. Nanomanufacturing and Metrology, 2, 1-15(2019).

    [6] Bosse H, Wilkening G. Developments at PTB in nanometrology for support of the semiconductor industry[J]. Measurement Science and Technology, 16, 2155-2166(2005).

    [7] Peggs G N, Maropoulos P G, Hughes E B et al. Recent developments in large-scale dimensional metrology[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 223, 571-595(2009).

    [8] Gao W, Kim S W, Bosse H et al. Measurement technologies for precision positioning[J]. CIRP Annals, 64, 773-796(2015).

    [9] Estler W T, Edmundson K L, Peggs G N et al. Large-scale metrology-an update[J]. CIRP Annals, 51, 587-609(2002).

    [10] Fortier T, Baumann E. 20 years of developments in optical frequency comb technology and applications[J]. Communications Physics, 2, 153(2019).

    [11] Kim S W. Combs rule[J]. Nature Photonics, 3, 313-314(2009).

    [12] Schliesser A, Picqué N, Hänsch T W. Mid-infrared frequency combs[J]. Nature Photonics, 6, 440-449(2012).

    [13] Cundiff S T, Ye J. Colloquium: femtosecond optical frequency combs[J]. Reviews of Modern Physics, 75, 325-342(2003).

    [14] Diddams S A, Udem T, Bergquist J C et al. An optical clock based on a single trapped 199Hg + ion[J]. Science, 293, 825-828(2001).

    [15] Papp S B, Beha K, Del’Haye P et al. Microresonator frequency comb optical clock[J]. Optica, 1, 10-15(2014).

    [16] Spencer D T, Drake T, Briles T C et al. An optical-frequency synthesizer using integrated photonics[J]. Nature, 557, 81-85(2018).

    [17] Jost J D, Hall J L, Ye J. Continuously tunable, precise, single frequency optical signal generator[J]. Optics Express, 10, 515-520(2002).

    [18] Giorgetta F R, Coddington I, Baumann E et al. Fast high-resolution spectroscopy of dynamic continuous-wave laser sources[J]. Nature Photonics, 4, 853-857(2010).

    [19] Kim J, Cox J A, Chen J et al. Drift-free femtosecond timing synchronization of remote optical and microwave sources[J]. Nature Photonics, 2, 733-736(2008).

    [20] Marra G, Margolis H S, Lea S N et al. High-stability microwave frequency transfer by propagation of an optical frequency comb over 50 km of optical fiber[J]. Optics Letters, 35, 1025-1027(2010).

    [21] Marra G, Slavik R, Margolis H S et al. High-resolution microwave frequency transfer over an 86-km-long optical fiber network using a mode-locked laser[J]. Optics Letters, 36, 511-513(2011).

    [22] Barmes I, Witte S, Eikema K S E. Spatial and spectral coherent control with frequency combs[J]. Nature Photonics, 7, 38-42(2013).

    [23] Ideguchi T, Poisson A, Guelachvili G et al. Adaptive real-time dual-comb spectroscopy[J]. Nature Communications, 5, 3375-3382(2014).

    [24] Ycas G, Giorgetta F R, Baumann E et al. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm[J]. Nature Photonics, 12, 202-208(2018).

    [25] Picqué N, Hänsch T W. Frequency comb spectroscopy[J]. Nature Photonics, 13, 146-157(2019).

    [26] Keilmann F, Gohle C, Holzwarth R. Time-domain mid-infrared frequency-comb spectrometer[J]. Optics Letters, 29, 1542-1544(2004).

    [27] Asahara A, Nishiyama A, Yoshida S et al. Dual-comb spectroscopy for rapid characterization of complex optical properties of solids[J]. Optics Letters, 41, 4971-4974(2016).

    [28] Minamikawa T, Hsieh Y D, Shibuya K et al. Dual-comb spectroscopic ellipsometry[J]. Nature Communications, 8, 610-617(2017).

    [29] Guo J J, Ding Y H, Xiao X S et al. Multiplexed static FBG strain sensors by dual-comb spectroscopy with a free running fiber laser[J]. Optics Express, 26, 16147-16154(2018).

    [30] Lu Q, Shi L, Mao Q H. Research advances in dual-comb spectroscopy[J]. Chinese Journal of Lasers, 45, 0400001(2018).

    [31] Jang Y S, Kim S W. Distance measurements using mode-locked lasers: a review[J]. Nanomanufacturing and Metrology, 1, 131-147(2018).

    [32] Dong X, Zhou X, Kang J Q et al. Ultrafast time-stretch microscopy based on dual-comb asynchronous optical sampling[J]. Optics Letters, 43, 2118-2121(2018).

    [33] Hase E J, Minamikawa T, Mizuno T et al. Scan-less confocal phase imaging based on dual-comb microscopy[J]. Optica, 5, 634-643(2018).

    [34] Bao C Y, Suh M G, Vahala K. Microresonator soliton dual-comb imaging[J]. Optica, 6, 1110-1116(2019).

    [35] Wu G H, Takahashi M, Arai K et al. Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs[J]. Scientific Reports, 3, 1894-1899(2013).

    [36] Zhu Z B, Ni K, Zhou Q et al. Two-color phase-stable dual-comb ranging without precise environmental sensing[J]. Optics Express, 27, 4660-4671(2019).

    [37] Shibuya K, Minamikawa T, Mizutani Y et al. Scan-less hyperspectral dual-comb single-pixel-imaging in both amplitude and phase[J]. Optics Express, 25, 21947-21957(2017).

    [38] Wang C, Deng Z J, Gu C L et al. Line-scan spectrum-encoded imaging by dual-comb interferometry[J]. Optics Letters, 43, 1606-1609(2018).

    [39] Duan Y H, Dong X, Zhang L et al. Ultrafast discrete swept source based on dual chirped combs for microscopic imaging[J]. Optics Express, 27, 2621-2631(2019).

    [40] Joo W D, Kim S, Park J et al. Femtosecond laser pulses for fast 3-D surface profilometry of microelectronic step-structures[J]. Optics Express, 21, 15323-15334(2013).

    [41] Kang J Q, Feng P P, Li B W et al. Video-rate centimeter-range optical coherence tomography based on dual optical frequency combs by electro-optic modulators[J]. Optics Express, 26, 24928-24939(2018).

    [42] Minoshima K, Matsumoto H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser[J]. Applied Optics, 39, 5512-5517(2000).

    [43] Jun Y. Absolute measurement of a long, arbitrary distance to less than an optical fringe[J]. Optics Letters, 29, 1153-1155(2004).

    [44] Wu G H, Liao L, Xiong S L et al. Synthetic wavelength interferometry of an optical frequency comb for absolute distance measurement[J]. Scientific Reports, 8, 4362(2018).

    [45] Joo K N, Kim S W. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser[J]. Optics Express, 14, 5954-5960(2006).

    [46] Persijn S T, Kok G J et al. Many-wavelength interferometry with thousands of lasers for absolute distance measurement[J]. Physical Review Letters, 108, 183901(2012).

    [47] Schuhler N, Salvadé Y, Lévêque S et al. Frequency-comb-referenced two-wavelength source for absolute distance measurement[J]. Optics Letters, 31, 3101-3103(2006).

    [48] Wang G C, Jang Y S, Hyun S et al. Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser[J]. Optics Express, 23, 9121-9129(2015).

    [49] Coddington I, Swann W C, Nenadovic L et al. Rapid and precise absolute distance measurements at long range[J]. Nature Photonics, 3, 351-356(2009).

    [50] Liu T A, Newbury N R, Coddington I. Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers[J]. Optics Express, 19, 18501-18509(2011).

    [51] Wu X J, Li Y, Wei H Y et al. Femtosecond optical frequency combs for precision measurement applications[J]. Laser & Optoelectronics Progress, 49, 030001(2012).

    [52] Wang Y L, Yang L H, Lin J R et al. Absolute distance measurement based on coherent detection by femtosecond optical frequency comb[J]. Acta Optica Sinica, 39, 0112003(2019).

    [53] Schiller S. Spectrometry with frequency combs[J]. Optics Letters, 27, 766-768(2002).

    [54] Wu G H, Xiong S L, Ni K et al. Parameter optimization of a dual-comb ranging system by using a numerical simulation method[J]. Optics Express, 23, 32044-32053(2015).

    [55] Roy J, Deschênes J D, Potvin S et al. Continuous real-time correction and averaging for frequency comb interferometry[J]. Optics Express, 20, 21932-21939(2012).

    [56] Lee J, Han S, Lee K et al. Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength[J]. Measurement Science and Technology, 24, 045201-045208(2013).

    [57] Zhang H Y, Wei H Y, Wu X J et al. Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling[J]. Optics Express, 22, 6597-6604(2014).

    [58] Zhu Z B, Xu G Y, Ni K et al. Synthetic-wavelength-based dual-comb interferometry for fast and precise absolute distance measurement[J]. Optics Express, 26, 5747-5757(2018).

    [59] Han S, Kim Y J, Kim S W. Parallel determination of absolute distances to multiple targets by time-of-flight measurement using femtosecond light pulses[J]. Optics Express, 23, 25874-25882(2015).

    [60] Suh M G, Vahala K J. Soliton microcomb range measurement[J]. Science, 359, 884-887(2018).

    [61] Trocha P, Karpov M, Ganin D et al. Ultrafast optical ranging using microresonator soliton frequency combs[J]. Science, 359, 887-891(2018).

    [62] Coddington I, Newbury N, Swann W. Dual-comb spectroscopy[J]. Optica, 3, 414-426(2016).

    [63] Shi H S, Song Y J, Liang F et al. Effect of timing jitter on time-of-flight distance measurements using dual femtosecond lasers[J]. Optics Express, 23, 14057-14069(2015).

    [64] Zhao X Y, Qu X H, Zhang F M et al. Absolute distance measurement by multi-heterodyne interferometry using an electro-optic triple comb[J]. Optics Letters, 43, 807-810(2018).

    [65] Li T, Zhao X, Chen J et al. Absolute distance measurement with a long ambiguity range using a tri-comb mode-locked fiber laser[C]. //CLEO: Science and Innovations 2019, May 5-10, 2019, San Jose, California, United States, SM2H, 1(2019).

    [66] Birch K P, Downs M J. Anupdated edlén equation for the refractive index of air[J]. Metrologia, 30, 155-162(1993).

    [67] Shi H S, Song Y J, Li R M et al. Review of low timing jitter mode-locked fiber lasers and applications in dual-comb absolute distance measurement[J]. Nanotechnology and Precision Engineering, 1, 205-217(2018).

    [68] Zhu Z B, Wu G H. Dual-comb ranging[J]. Engineering, 4, 772-778(2018).

    [69] Coddington I, Swann W C, Newbury N R. Coherent dual-comb spectroscopy at high signal-to-noise ratio[J]. Physical Review A, 82, 043817-043829(2010).

    [70] Truong G W, Waxman E M, Cossel K C et al. Accurate frequency referencing for fieldable dual-comb spectroscopy[J]. Optics Express, 24, 30495-30504(2016).

    [71] Okubo S, Iwakuni K, Inaba H et al. Ultra-broadband dual-comb spectroscopy across 1.0-1.9 μm[J]. Applied Physics Express, 8, 082402(2015).

    [72] Kuse N Y, Ozawa A, Kobayashi Y. Comb-resolved dual-comb spectroscopy stabilized by free-running continuous-wave lasers[J]. Applied Physics Express, 5, 112402(2012).

    [73] Zhu Z B, Xu G Y, Ni K et al. Improving the accuracy of a dual-comb interferometer by suppressing the relative linewidth[J]. Measurement Science and Technology, 29, 045007-045011(2018).

    [74] Yasui T, Iyonaga Y, Hsieh Y D et al. Super-resolution discrete Fourier transform spectroscopy beyond time-window size limitation using precisely periodic pulsed radiation[J]. Optica, 2, 460-467(2015).

    [75] Zhu Z B, Ni K, Zhou Q et al. Digital correction method for realizing a phase-stable dual-comb interferometer[J]. Optics Express, 26, 16813-16823(2018).

    [76] Burghoff D, Yang Y, Hu Q. Computational multiheterodyne spectroscopy[J]. Science Advances, 2, e1601227(2016).

    [77] Hébert N B, Genest J, Deschênes J D et al. Self-corrected chip-based dual-comb spectrometer[J]. Optics Express, 25, 8168-8179(2017).

    [78] Yu H Y, Ni K, Zhou Q et al. Digital error correction of dual-comb interferometer without external optical referencing information[J]. Optics Express, 27, 29425-29438(2019).

    [79] Sterczewski L A, Westberg J, Wysocki G. Computational coherent averaging for free-running dual-comb spectroscopy[J]. Optics Express, 27, 23875-23893(2019).

    [80] Hébert N B, Michaud-Belleau V, Deschênes J D et al. Self-correction limits in dual-comb interferometry[J]. IEEE Journal of Quantum Electronics, 55, 1-11(2019).

    [81] Zhou S Y, Lin C, Yang Y T et al. Multi-pulse sampling dual-comb ranging method[J]. Optics Express, 28, 4058-4066(2020).

    [82] Zhou S Y, Xiong S L, Zhu Z B et al. Simplified phase-stable dual-comb interferometer for short dynamic range distance measurement[J]. Optics Express, 27, 22868-22876(2019).

    [83] Wang P K C, Hadaegh F Y, Lau K. Synchronized formation rotation and attitude control of multiple free-flying spacecraft[J]. Journal of Guidance, Control, and Dynamics, 22, 28-35(1999).

    [84] Uriarte L, Zatarain M, Axinte D et al. Machine tools for large parts[J]. CIRP Annals, 62, 731-750(2013).

    [85] Zhou S Y, Le V, Xiong S L et al. Dual-comb spectroscopy resolved three-degree-of-freedom sensing[J]. Photonics Research, 9, 243-251(2021).

    [86] Xu L M, Song Y J, Liang F et al. All polarization maintaining fiber based dual-comb high precision absolute distance measurement system[J]. Acta Optica Sinica, 35, S212001(2015).

    [87] Kim W, Jang J, Han S et al. Absolute laser ranging by time-of-flight measurement of ultrashort light pulses[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 37, B27-B35(2020).

    [88] Hu D T, Wu Z L, Cao H et al. Dual-comb absolute distance measurement of non-cooperative targets with a single free-running mode-locked fiber laser[J]. Optics Communications, 482, 126566(2021).

    [89] Cao H, Song Y J, Hu M L et al. Singular spectrum analysis for extracting low amplitude vibrations in femtosecond laser time-of-flight distance measurements[J]. IEEE Photonics Journal, 13, 1-10(2021).

    [90] Teleanu E L, Durán V, Torres-Company V. Electro-optic dual-comb interferometer for high-speed vibrometry[J]. Optics Express, 25, 16427-16436(2017).

    [91] Weimann C, Messner A, Baumgartner T et al. Fast high-precision distance metrology using a pair of modulator-generated dual-color frequency combs[J]. Optics Express, 26, 34305-34335(2018).

    [92] Gaeta A L, Lipson M, Kippenberg T J. Photonic-chip-based frequency combs[J]. Nature Photonics, 13, 158-169(2019).

    [93] Kippenberg T J, Gaeta A L, Lipson M et al. Dissipative Kerr solitons in optical microresonators[J]. Science, 361, eaan8083(2018).

    [94] Lukashchuk A, Riemensberger J, Karpov M et al. Microresonator dual-comb coherent FMCW LiDAR[C]. //2020 Conference on Lasers and Electro-Optics (CLEO), May 10-15, 2020, San Jose, CA, USA., 1-2(2020).

    [95] Wang J D, Lu Z Z, Wang W Q et al. Long-distance ranging with high precision using a soliton microcomb[J]. Photonics Research, 8, 1964-1972(2020).

    Guanhao Wu, Siyu Zhou, Yuetang Yang, Kai Ni. Dual-Comb Ranging and Its Applications[J]. Chinese Journal of Lasers, 2021, 48(15): 1504002
    Download Citation