• Semiconductor Optoelectronics
  • Vol. 45, Issue 1, 1 (2024)
LUO Yuan, SHEN Jixiang, and LI Fangyu
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.16818/j.issn1001-5868.2023112202 Cite this Article
    LUO Yuan, SHEN Jixiang, LI Fangyu. Review of Visual SLAM Research Based on Deep Learning in Dynamic Environments[J]. Semiconductor Optoelectronics, 2024, 45(1): 1 Copy Citation Text show less
    References

    [1] Bresson G, Alsayed Z, Li Y, et al. Simultaneous localization and mapping: A survey of current trends in autonomous driving[J]. IEEE Trans. on Intelligent Vehicles, 2017, 2(3): 194-220.

    [2] Li R H, Wang S, Gu D B. Ongoing evolution of visual SLAM from geometry to deep learning: challenges and opportunities[J]. Cognitive Computation, 2018, 10(6): 875-889.

    [5] Teed Z, Deng J. Droid-SLAM: Deep visual slam for monocular, stereo, and RGB-D cameras[J]. Advances in Neural Information Processing Systems, 2021, 34: 16558-16569.

    [7] Wen S, Li P, Zhao Y, et al. Semantic visual SLAM in dynamic environment[J]. Autonomous Robots, 2021, 45(4): 493-504.

    [8] Su P, Luo S, Huang X. Real-time dynamic SLAM algorithm based on deep learning[J]. IEEE Access, 2022, 10: 87754-87766.

    [9] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]// Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. USA: IEEE, 2016: 779-788.

    [10] Badrinarayanan V, Kendall A, Cipolla R. Segnet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.

    [11] He K, Gkioxari G, Dollr P, et al. Mask R-CNN[C]// Proc. of the IEEE Inter. Conf. on Computer Vision. USA: IEEE, 2017: 2961-2969.

    [12] Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]// IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). USA: IEEE, 2017: 6230-6239.

    [13] Li G, Liu Z, Ling H. ICNet: information conversion network for RGB-D based salient object detection[J]. IEEE Trans. on Image Processing, 2020, 29: 4873-4884.

    [14] Yu C, Liu Z, Liu X J, et al. DS-SLAM: A semantic visual SLAM towards dynamic environments[C]// 2018 IEEE/RSJ Inter. Conf. on Intelligent Robots and Systems (IROS). IEEE, 2018: 1168-1174.

    [15] Bescos B, Fcil J M, Civera J, et al. DynaSLAM: Tracking, mapping, and inpainting in dynamic scenes[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 4076-4083.

    [16] Long X, Zhang W, Zhao B. PSPNet-SLAM: A semantic SLAM detect dynamic object by pyramid scene parsing network[J]. IEEE Access, 2020, 8: 214685-214695.

    [17] Cheng S, Sun C, Zhang S, et al. SG-SLAM: A real-time RGB-D visual SLAM toward dynamic scenes with semantic and geometric information[J]. IEEE Trans. on Instrumentation and Measurement, 2022, 72: 1-12.

    [18] Wei W, Huang K, Liu X, et al. GSL-VO: A geometric-semantic information enhanced lightweight visual odometry in dynamic environments[J]. IEEE Trans. on Instrumentation and Measurement, 2023, 72: 2522513.

    [19] Mur-Artal R, Tardós J D. ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE Trans. on Robotics, 2017, 33(5): 1255-1262.

    [20] Campos C, Elvira R, Rodríguez J J G, et al. ORB-SLAM3: An accurate open-source library for visual, visual-inertial, and multimap SLAM[J]. IEEE Trans. on Robotics, 2021, 37(6): 1874-1890.

    [21] Chen W, Shang G, Ji A, et al. An overview on visual SLAM: From tradition to semantic[J]. Remote Sensing, 2022, 14(13): 3010.

    [22] Pazhani A A J, Vasanthanayaki C. Object detection in satellite images by faster R-CNN incorporated with enhanced ROI pooling (FrRNet-ERoI) framework[J]. Earth Science Informatics, 2022, 15(1): 553-561.

    [23] Hu K, Lu F, Lu M, et al. A marine object detection algorithm based on SSD and feature enhancement[J]. Complexity, 2020, 2020: 1-14.

    [24] Shao F, Chen L, Shao J, et al. Deep learning for weakly-supervised object detection and localization: A survey[J]. Neurocomputing, 2022, 496: 192-207.

    [25] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2014: 580-587.

    [26] Girshick R. Fast R-CNN[C]// Proc. of the IEEE Inter. Conf. on Computer Vision, 2015: 1440-1448.

    [27] Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.

    [28] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[C]// Computer Vision-ECCV 2016: 14th European Conf., Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part Ⅰ 14. Springer International Publishing, 2016: 21-37.

    [29] Zhong F, Wang S, Zhang Z, et al. Detect-SLAM: Making object detection and SLAM mutually beneficial[C]// 2018 IEEE Winter Conf. on Applications of Computer Vision (WACV). IEEE, 2018: 1001-1010.

    [30] Gong H, Gong L, Ma T, et al. AHY-SLAM: Toward faster and more accurate visual SLAM in dynamic scenes using homogenized feature extraction and object detection method[J]. Sensors, 2023, 23(9): 4241.

    [31] Wu W, Guo L, Gao H, et al. YOLO-SLAM: A semantic SLAM system towards dynamic environment with geometric constraint[J]. Neural Computing and Applications, 2022: 1-16.

    [32] Wang Z, Zhang Q, Li J, et al. A computationally efficient semantic SLAM solution for dynamic scenes[J]. Remote Sensing, 2019, 11(11): 1363.

    [33] Liu Y, Miura J. RDS-SLAM: Real-time dynamic SLAM using semantic segmentation methods[J]. IEEE Access, 2021, 9: 23772-23785.

    [34] Wang Y, Bu H, Zhang X, et al. YPD-SLAM: A real-time VSLAM system for handling dynamic indoor environments[J]. Sensors, 2022, 22(21): 8561.

    [35] Hoang T M, Zhou J, Fan Y. Image compression with encoder-decoder matched semantic segmentation[C]// Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition Workshops, 2020: 160-161.

    [36] Esparza D, Flores G. The STDyn-SLAM: A stereo vision and semantic segmentation approach for VSLAM in dynamic outdoor environments[J]. IEEE Access, 2022, 10: 18201-18209.

    [37] Zhao Y, Xiong Z, Zhou S, et al. KSF-SLAM: A key segmentation frame based semantic SLAM in dynamic environments[J]. J. of Intelligent & Robotic Systems, 2022, 105(1): 3.

    [38] Li X, Belaroussi R. Semi-dense 3D semantic mapping from monocular SLAM[J]. arXiv preprint arXiv: 1611.04144, 201620231122. http:// arSiv.labs.arxiv.org/html/1611.04144.

    [39] Han S, Xi Z. Dynamic scene semantics SLAM based on semantic segmentation[J]. IEEE Access, 2020, 8: 43563-43570.

    [40] Schorghuber M, Steininger D, Cabon Y, et al. SLAMANTIC-leveraging semantics to improve VSLAM in dynamic environments[C]// Proc. of the IEEE/CVF Inter. Conf. on Computer Vision Workshops, 2019: 3759-3768.

    [41] Lai D, Li C, He B. YO-SLAM: A robust visual SLAM towards dynamic environments[C]// 2021 Inter. Conf. on Communications, Information System and Computer Engineering (CISCE). IEEE, 2021: 720-725.

    [42] Yu N, Gan M, Yu H, et al. DRSO-SLAM: A dynamic RGB-D SLAM algorithm for indoor dynamic scenes[C]// 2021 33rd Chinese Control and Decision Conference (CCDC). IEEE, 2021: 1052-1058.

    [43] Liu Y, Miura J. RDMO-SLAM: Real-time visual SLAM for dynamic environments using semantic label prediction with optical flow[J]. IEEE Access, 2021, 9: 106981-106997.

    [44] Mur-Artal R, Montiel J M M, Tardos J D. ORB-SLAM: A versatile and accurate monocular SLAM system[J]. IEEE Trans. on Robotics, 2015, 31(5): 1147-1163.