• Photonics Research
  • Vol. 4, Issue 4, 0135 (2016)
Zhijian Zheng, Deqin Ouyang, Junqing Zhao, Minqiu Liu, Shuangchen Ruan*, Peiguang Yan, and Jinzhang Wang
Author Affiliations
  • Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • show less
    DOI: 10.1364/prj.4.000135 Cite this Article Set citation alerts
    Zhijian Zheng, Deqin Ouyang, Junqing Zhao, Minqiu Liu, Shuangchen Ruan, Peiguang Yan, Jinzhang Wang. Scaling all-fiber mid-infrared supercontinuum up to 10 W-level based on thermal-spliced silica fiber and ZBLAN fiber[J]. Photonics Research, 2016, 4(4): 0135 Copy Citation Text show less
    References

    [1] M. Kumar, M. N. Islam, F. L. Terry, M. J. Freeman, A. Chan, M. Neelakandan, T. Manzur. Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source. Appl. Opt., 51, 2794-2807(2012).

    [2] C. H. Li, A. G. Glenday, A. J. Benedick, G. Q. Chang, L. J. Chen, C. Cramer, P. Fendel, G. Furesz, F. X. Kärtner, S. Korzennik, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, R. L. Walsworth. In-situ determination of astro-comb calibrator lines to better than 10 cm−1. Opt. Express, 18, 13239-13249(2010).

    [3] V. V. Alexander, Z. Shi, M. N. Islam, K. Ke, G. Kailinchenko, M. J. Freeman, A. Ifarraguerri, J. Meola, A. Absi, J. Leonard, J. A. Zadnik, A. S. Szalkowski, G. J. Boer. Field trial of active remote sensing using a high-power short-wave infrared supercontinuum laser. Appl. Opt., 52, 6813-6823(2013).

    [4] C. Vozzi, M. Negro, S. Stagira. Strong-field phenomena driven by mid-infrared ultrafast sources: JMO Series: attosecond and strong field science. J. Mod. Opt., 59, 1283-1302(2012).

    [5] C. Lin, R. H. Stolen. New nanosecond continuum for excited-state spectroscopy. Appl. Phys. Lett., 28, 216-218(1976).

    [6] P. G. Yan, J. Shu, S. C. Ruan, J. Zhao, J. Q. Zhao, C. L. Du, C. Y. Guo, H. F. Wei, J. Luo. Polarization dependent visible supercontinuum generation in the nanoweb fiber. Opt. Express, 19, 4985-4990(2011).

    [7] R. Song, J. Hou, S. P. Chen, W. Q. Yang, Q. S. Lu. High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier. Opt. Lett., 37, 1529-1531(2012).

    [8] J. Swiderski, M. Michalska. Mid-infrared supercontinuum generation in a single-mode thulium-doped fiber amplifier. Laser Phys. Lett., 10, 035105(2013).

    [9] X. H. Fang, M. L. Hu, L. L. Huang, L. Chai, N. L. Dai, J. Y. Li, A. Y. Tashchilina, A. M. Zheltikov, C. Y. Wang. Multiwatt octave-spanning supercontinuum generation in multicore photonic-crystal fiber. Opt. Lett., 37, 2292-2294(2012).

    [10] K. M. Hilligse, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mlmer, S. Keiding, R. Kristiansen, K. P. Hansen, J. J. Larsen. Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths. Opt. Express, 12, 1045-1054(2004).

    [11] H. W. Chen, S. P. Chen, J. H. Wang, Z. L. Chen, J. Hou. 35 W high power all fiber supercontinuum generation in PCF with picosecond MOPA laser. Opt. Commun., 284, 5484-5487(2011).

    [12] J. M. Dudley, G. Genty, S. Coen. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys., 78, 1135-1184(2006).

    [13] P. G. Yan, G. L. Zhang, H. F. Wei, D. Q. Ouyang, S. S. Huang, J. Q. Zhao, K. K. Chen, J. Luo, S. C. Ruan. Double cladding seven-core photonic crystal fibers with different GVD properties and fundamental supermode output. J. Lightwave Technol., 31, 3658-3662(2013).

    [14] L. B. Shaw, P. A. Thielen, F. H. Kung, V. Q. Nguyen, J. S. Sanghera, I. D. Aggarwal. IR supercontinuum generation in As-Se photonic crystal fiber. Advanced Solid-State Photonics (ASSP)(2005).

    [15] P. G. Yan, R. J. Dong, G. L. Zhang, H. Q. Li, S. C. Ruan. Numerical simulation on the coherent time-critical 2–5  μm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile. Opt. Commun., 293, 133-138(2013).

    [16] R. Thapa, R. R. Gattass, V. Nguyen, G. Chin, D. Gibson, W. Kim, L. B. Shaw, J. S. Sanghera. Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development. Opt. Lett., 40, 5074-5077(2015).

    [17] C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, O. Bang. Mid-infrared supercontinuum covering the 1.4–13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat. Photonics, 8, 830-834(2014).

    [18] R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, A. Chavez-Pirson. Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5  μm. Proc. SPIE, 8898, 889808(2013).

    [19] P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, F. G. Omenetto. Over 4000  nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. Opt. Express, 16, 7161-7168(2008).

    [20] M. Belal, L. Xu, P. Horak, L. Shen, X. Feng, M. Ettabib, D. J. Richardson, P. Petropoulos, J. H. V. Price. Mid-infrared supercontinuum generation in suspended core tellurite microstructured optical fibers. Opt. Lett., 40, 2237-2240(2015).

    [21] C. L. Hagen, J. W. Walewski, S. T. Sanders. Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source. IEEE Photon. Technol. Lett., 18, 91-93(2006).

    [22] K. Liu, J. Liu, H. Shi, F. Tan, P. Wang. High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power. Opt. Express, 22, 24384-24391(2014).

    [23] C. Xia, Z. Xu, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, J. Mauricio. 10.5  W time-averaged power mid-IR supercontinuum generation extending beyond 4  μm with direct pulse pattern modulation. IEEE J. Sel. Top. Quantum Electron., 15, 422-434(2009).

    [24] J. Swiderski, M. Michalska. High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared. Opt. Lett., 39, 910-913(2014).

    [25] W. Q. Yang, B. Zhang, G. H. Xue, K. Yin, J. Hou. Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2  μm MOPA system. Opt. Lett., 39, 1849-1852(2014).

    [26] K. Liu, J. Liu, H. Shi, F. Tan, P. Wang. 24.3  W mid-infrared supercontinuum generation from a single-mode ZBLAN fiber pumped by thulium-doped fiber amplifier. Advanced Solid State Lasers (ASSL)(2014).

    [27] J. Swiderski, M. Michalska, G. Maze. Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system. Opt. Express, 21, 7851-7857(2013).

    [28] M. Eckerle, C. Kieleck, J. Swiderski, S. D. Jackson, G. Maze, M. Eichhorn. Actively Q-switched and mode-locked Tm3+-doped silicate 2  μm fiber laser for supercontinuum generation in fluoride fiber. Opt. Lett., 37, 512-514(2012).

    [29] X. Zhu, N. Peyghambarian. High-power ZBLAN glass fiber lasers: review and prospect. Adv. Optoelectron., 2010, 501956(2010).

    [30] J. Swiderski. High-power mid-infrared supercontinuum sources: current status and future perspectives. Prog. Quant. Electron., 38, 189-235(2014).

    [31] Z. J. Zheng, D. Q. Ouyang, J. Q. Zhao, S. C. Ruan, J. Yu, C. Y. Guo, J. Z. Wang. An effective thermal splicing method to join fluoride and silica fibers for a high power regime. Chin. Phys. Lett., 32, 114206(2015).

    [32] K. Yin, B. Zhang, J. Yao, L. Yang, S. Chen, J. Hou. Highly stable, monolithic, single-mode mid-infrared supercontinuum source based on low-loss fusion spliced silica and fluoride fibers. Opt. Lett., 41, 946-949(2016).

    Zhijian Zheng, Deqin Ouyang, Junqing Zhao, Minqiu Liu, Shuangchen Ruan, Peiguang Yan, Jinzhang Wang. Scaling all-fiber mid-infrared supercontinuum up to 10 W-level based on thermal-spliced silica fiber and ZBLAN fiber[J]. Photonics Research, 2016, 4(4): 0135
    Download Citation