• Chinese Journal of Lasers
  • Vol. 51, Issue 10, 1002305 (2024)
Guanqi Li1, Dongsheng Zhang2, Jiaxing Zheng1, Lü Chao1, Wei Liu3, Xinqing Zhao1, Bingbing Zhang2, and Huilong Hou1、4、*
Author Affiliations
  • 1School of Materials Science and Engineering, Beihang University, Beijing 100191, China
  • 2Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • 3Printing Research & Engineering Technology Center, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
  • 4Tianmushan Laboratory (Zhejiang Provincial Laboratory for Aviation), Hangzhou 311115, Zhejiang , China
  • show less
    DOI: 10.3788/CJL240440 Cite this Article Set citation alerts
    Guanqi Li, Dongsheng Zhang, Jiaxing Zheng, Lü Chao, Wei Liu, Xinqing Zhao, Bingbing Zhang, Huilong Hou. Laser Additive Manufacturing of Metallic Functional Materials and In-Situ Synchrotron Radiation Research (Invited)[J]. Chinese Journal of Lasers, 2024, 51(10): 1002305 Copy Citation Text show less
    References

    [1] Lai Y Z, Wang K, Lü C et al. Strain glass transition in Ni47.5+xTi50-xFe2.5 alloys[J]. Journal of Alloys and Compounds, 929, 167387(2022).

    [2] Lü C, Wang K, Wang B et al. Coexistence of strain glass transition and martensitic transformation in highly nickel-rich ferroelastic alloy with large elastocaloric effect[J]. Acta Materialia, 264, 119598(2024).

    [3] Zhang K C, Wang K, Wang B et al. Observing strain glass transition in Ti33Nb15Zr25Hf25O2 high entropy alloy with Elinvar effect[J]. Journal of Materials Science & Technology, 168, 16-23(2024).

    [4] Lagoudas D C[M]. Shape memory alloys(2008).

    [5] Jani J M, Leary M, Subic A et al. A review of shape memory alloy research, applications and opportunities[J]. Materials & Design, 56, 1078-1113(2014).

    [6] Otsuka K, Wayman C M[M]. Shape memory materials(1998).

    [7] Huang X Y, Ackland G J, Rabe K M. Crystal structures and shape-memory behaviour of NiTi[J]. Nature Materials, 2, 307-311(2003).

    [8] Wang H, Huang H Y, Su Y J. Tuning the operation temperature window of the elastocaloric effect in Cu-Al-Mn shape memory alloys by composition design[J]. Journal of Alloys and Compounds, 828, 154265(2020).

    [9] Xia J, Noguchi Y, Xu X et al. Iron-based superelastic alloys with near-constant critical stress temperature dependence[J]. Science, 369, 855-858(2020).

    [10] Auricchio F, Boatti E, Conti M et al. SMA biomedical applications[M]. Shape memory alloy engineering, 627-658(2021).

    [11] Kaynak Y, Karaca H E, Noebe R D et al. Tool-wear analysis in cryogenic machining of NiTi shape memory alloys: a comparison of tool-wear performance with dry and MQL machining[J]. Wear, 306, 51-63(2013).

    [12] Thijs L, Verhaeghe F, Craeghs T et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 58, 3303-3312(2010).

    [13] Gu D D, Meiners W, Wissenbach K et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms[J]. International Materials Reviews, 57, 133-164(2012).

    [14] Frazier W E. Metal additive manufacturing: a review[J]. Journal of Materials Engineering and Performance, 23, 1917-1928(2014).

    [15] Herzog D, Seyda V, Wycisk E et al. Additive manufacturing of metals[J]. Acta Materialia, 117, 371-392(2016).

    [16] Ligon S C, Liska R, Stampfl J et al. Polymers for 3D printing and customized additive manufacturing[J]. Chemical Reviews, 117, 10212-10290(2017).

    [17] Martin J H, Yahata B D, Hundley J M et al. 3D printing of high-strength aluminium alloys[J]. Nature, 549, 365-369(2017).

    [18] DebRoy T, Wei H L, Zuback J S et al. Additive manufacturing of metallic components: process, structure and properties[J]. Progress in Materials Science, 92, 112-224(2018).

    [19] Ngo T D, Kashani A, Imbalzano G et al. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges[J]. Composites Part B: Engineering, 143, 172-196(2018).

    [20] Sames W J, List F A, Pannala S et al. The metallurgy and processing science of metal additive manufacturing[J]. International Materials Reviews, 61, 315-360(2016).

    [21] Wang Z Y, Daniels J E. Quantitative analysis of domain textures in ferroelectric ceramics from single high-energy synchrotron X-ray diffraction images[J]. Journal of Applied Physics, 121, 164102(2017).

    [22] Mayi Y A, Dal M, Peyre P et al. Physical mechanisms of conduction-to-keyhole transition in laser welding and additive manufacturing processes[J]. Optics & Laser Technology, 158, 108811(2023).

    [23] Himpsel F J, McFeely F R, Taleb-Ibrahimi A et al. Microscopic structure of the SiO2/Si interface[J]. Physical Review B, 38, 6084-6096(1988).

    [24] Turner M J L, Abbey A, Arnaud M et al. The European photon imaging camera on XMM-newton: the MOS cameras[J]. Astronomy & Astrophysics, 365, L27-L35(2001).

    [25] Whitmore L, Wallace B A. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data[J]. Nucleic Acids Research, 32, W668-W673(2004).

    [26] Kelly S M, Jess T J, Price N C. How to study proteins by circular dichroism[J]. Biochimica et Biophysica Acta (BBA)- Proteins and Proteomics, 1751, 119-139(2005).

    [27] Cançado L G, Takai K, Enoki T et al. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy[J]. Applied Physics Letters, 88, 163106(2006).

    [28] Whitmore L, Wallace B A. Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases[J]. Biopolymers, 89, 392-400(2008).

    [29] Bouxsein M L, Boyd S K, Christiansen B A et al. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography[J]. Journal of Bone and Mineral Research, 25, 1468-1486(2010).

    [30] Emma P, Akre R, Arthur J et al. First lasing and operation of an ångstrom-wavelength free-electron laser[J]. Nature Photonics, 4, 641-647(2010).

    [31] Toby B H, Von Dreele R B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package[J]. Journal of Applied Crystallography, 46, 544-549(2013).

    [32] French A D. Idealized powder diffraction patterns for cellulose polymorphs[J]. Cellulose, 21, 885-896(2014).

    [33] Guo Q L, Zhao C, Qu M L et al. In-situ characterization and quantification of melt pool variation under constant input energy density in laser powder bed fusion additive manufacturing process[J]. Additive Manufacturing, 28, 600-609(2019).

    [34] Guo Q L, Zhao C, Qu M L et al. In-situ full-field mapping of melt flow dynamics in laser metal additive manufacturing[J]. Additive Manufacturing, 31, 100939(2020).

    [35] Zhao C, Parab N D, Li X X et al. Critical instability at moving keyhole tip generates porosity in laser melting[J]. Science, 370, 1080-1086(2020).

    [36] Cunningham R, Zhao C, Parab N et al. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed X-ray imaging[J]. Science, 363, 849-852(2019).

    [37] Hojjatzadeh S M H, Parab N D, Yan W T et al. Pore elimination mechanisms during 3D printing of metals[J]. Nature Communications, 10, 3088(2019).

    [38] Ren Z S, Gao L, Clark S J et al. Machine learning-aided real-time detection of keyhole pore generation in laser powder bed fusion[J]. Science, 379, 89-94(2023).

    [39] Fleming T G, Rees D T, Marussi S et al. In situ correlative observation of humping-induced cracking in directed energy deposition of nickel-based superalloys[J]. Additive Manufacturing, 71, 103579(2023).

    [40] Zhao C, Fezzaa K, Cunningham R W et al. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction[J]. Scientific Reports, 7, 3602(2017).

    [41] Sun T, Tan W D, Chen L Y et al. In situ/operando synchrotron X-ray studies of metal additive manufacturing[J]. MRS Bulletin, 45, 927-933(2020).

    [42] Calta N P, Thampy V, Lee D R C et al. Cooling dynamics of two titanium alloys during laser powder bed fusion probed with in situ X-ray imaging and diffraction[J]. Materials & Design, 195, 108987(2020).

    [43] Thampy V, Fong A Y, Calta N P et al. Subsurface cooling rates and microstructural response during laser based metal additive manufacturing[J]. Scientific Reports, 10, 1981(2020).

    [44] Hocine S, van Swygenhoven H, van Petegem S et al. Operando X-ray diffraction during laser 3D printing[J]. Materials Today, 34, 30-40(2020).

    [45] Glerum J A, Hocine S, Chang C S T et al. Operando X-ray diffraction study of thermal and phase evolution during laser powder bed fusion of Al-Sc-Zr elemental powder blends[J]. Additive Manufacturing, 55, 102806(2022).

    [46] Graf G, Rosigkeit J, Krohmer E et al. In situ investigation of the rapid solidification behavior of intermetallic γ-TiAl-based alloys using high-energy X-ray diffraction[J]. Advanced Engineering Materials, 23, 2100557(2021).

    [47] Ahmed F F, Clark S J, Alex Leung C L et al. Achieving homogeneity in a high-Fe β-Ti alloy laser-printed from blended elemental powders[J]. Materials & Design, 210, 110072(2021).

    [48] Wahlmann B, Krohmer E, Breuning C et al. In situ observation of γ phase transformation dynamics during selective laser melting of CMSX-4[J]. Advanced Engineering Materials, 23, 2100112(2021).

    [49] König H H, Pettersson N H, Durga A et al. Solidification modes during additive manufacturing of steel revealed by high-speed X-ray diffraction[J]. Acta Materialia, 246, 118713(2023).

    [50] Guo Q L, Qu M L, Chuang C A et al. Phase transformation dynamics guided alloy development for additive manufacturing[J]. Additive Manufacturing, 59, 103068(2022).

    [51] Chen Y H, Clark S J, Collins D M et al. Correlative synchrotron X-ray imaging and diffraction of directed energy deposition additive manufacturing[J]. Acta Materialia, 209, 116777(2021).

    [52] Silveira A C F, Fechte-Heinen R, Epp J. Microstructure evolution during laser-directed energy deposition of tool steel by in situ synchrotron X-ray diffraction[J]. Additive Manufacturing, 63, 103408(2023).

    [53] Epp J, Dong J, Meyer H et al. Analysis of cyclic phase transformations during additive manufacturing of hardenable tool steel by in situ X-ray diffraction experiments[J]. Scripta Materialia, 177, 27-31(2020).

    [54] Schmeiser F, Krohmer E, Schell N et al. Internal stress evolution and subsurface phase transformation in titanium parts manufactured by laser powder bed fusion: an in situ X-ray diffraction study[J]. Advanced Engineering Materials, 23, 2001502(2021).

    [55] Schmeiser F, Krohmer E, Wagner C et al. In situ microstructure analysis of Inconel 625 during laser powder bed fusion[J]. Journal of Materials Science, 57, 9663-9677(2022).

    [56] Khairallah S A, Anderson A T, Rubenchik A M et al. Laser powder-bed fusion additive manufacturing physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones[M]. Additive manufacturing handbook, 613-625(2017).

    [57] Li B Q, Wang L, Wang B B et al. Electron beam freeform fabrication of NiTi shape memory alloys: crystallography, martensitic transformation, and functional response[J]. Materials Science and Engineering: A, 843, 143135(2022).

    [58] Pu Z, Du D, Wang K M et al. Study on the NiTi shape memory alloys in situ synthesized by dual-wire-feed electron beam additive manufacturing[J]. Additive Manufacturing, 56, 102886(2022).

    [59] Xu D, Wang H Y, Yuan X M et al. Comparison of shape memory properties between Cu-12.5Al-3Mn and Cu-12.5Al-3Mn-1Ni produced by additive manufacturing technology[J]. Journal of Materials Research and Technology, 26, 4070-4077(2023).

    [60] Saltzman D, Bichnevicius M, Lynch S et al. Design and evaluation of an additively manufactured aircraft heat exchanger[J]. Applied Thermal Engineering, 138, 254-263(2018).

    [61] Careri F, Khan R H U, Todd C et al. Additive manufacturing of heat exchangers in aerospace applications: a review[J]. Applied Thermal Engineering, 235, 121387(2023).

    [62] Jafari D, Wits W W. The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: a review[J]. Renewable and Sustainable Energy Reviews, 91, 420-442(2018).

    [63] Nadimpalli V K, Pedersen D B. Additive manufacturing of functional metals[M]. 3D printing for energy applications, 1-32(2021).

    [64] Svetlizky D, Zheng B L, Vyatskikh A et al. Laser-based directed energy deposition (DED-LB) of advanced materials[J]. Materials Science and Engineering: A, 840, 142967(2022).

    [65] Chowdhury S, Yadaiah N, Prakash C et al. Laser powder bed fusion: a state-of-the-art review of the technology, materials, properties & defects, and numerical modelling[J]. Journal of Materials Research and Technology, 20, 2109-2172(2022).

    [66] Hou H L, Simsek E, Ma T et al. Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing[J]. Science, 366, 1116-1121(2019).

    [67] Chang K H. Rapid prototyping[M]. e-Design, 743-786(2015).

    [68] Bonnot E, Romero R, Mañosa L et al. Elastocaloric effect associated with the martensitic transition in shape-memory alloys[J]. Physical Review Letters, 100, 125901(2008).

    [69] Hou H L, Qian S X, Takeuchi I. Materials, physics and systems for multicaloric cooling[J]. Nature Reviews Materials, 7, 633-652(2022).

    [71] Qian S X, Geng Y L, Wang Y et al. A review of elastocaloric cooling: materials, cycles and system integrations[J]. International Journal of Refrigeration, 64, 1-19(2016).

    [72] Cui J, Wu Y M, Muehlbauer J et al. Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires[J]. Applied Physics Letters, 101, 073904(2012).

    [73] Chen J Y, Lei L P, Fang G. Elastocaloric cooling of shape memory alloys: a review[J]. Materials Today Communications, 28, 102706(2021).

    [74] Hou H L, Simsek E, Stasak D et al. Elastocaloric cooling of additive manufactured shape memory alloys with large latent heat[J]. Journal of Physics D: Applied Physics, 50, 404001(2017).

    [75] Achary S N, Jayakumar O D, Tyagi A K. Multiferroic materials[M]. Functional materials, 155-191(2012).

    [76] Hou H L, Finkel P, Staruch M et al. Ultra-low-field magneto-elastocaloric cooling in a multiferroic composite device[J]. Nature Communications, 9, 4075(2018).

    [77] Sun W, Lu X, Wei Z Y et al. Multicaloric effect in Ni-Mn-Sn metamagnetic shape memory alloys by laser powder bed fusion[J]. Additive Manufacturing, 59, 103125(2022).

    [78] Kordizadeh F, Safaei K, Mohajerani S et al. Investigation of the elastocaloric effect in laser powder bed fusion NiTi porous structures[J]. Additive Manufacturing Letters, 6, 100131(2023).

    [79] Chluba C, Ge W W, de Miranda R L et al. Ultralow-fatigue shape memory alloy films[J]. Science, 348, 1004-1007(2015).

    [80] Hou H L, Cui J, Qian S X et al. Overcoming fatigue through compression for advanced elastocaloric cooling[J]. MRS Bulletin, 43, 285-290(2018).

    [81] Otsuka K, Ren X. Physical metallurgy of Ti-Ni-based shape memory alloys[J]. Progress in Materials Science, 50, 511-678(2005).

    [82] Lindquist P G, Wayman C M. Shape memory and transformation behavior of martensitic Ti-Pd-Ni and Ti-Pt-Ni alloys[M]. Engineering aspects of shape memory alloys, 58-68(1990).

    [83] Strnadel B, Ohashi S, Ohtsuka H et al. Cyclic stress-strain characteristics of Ti-Ni and Ti-Ni-Cu shape memory alloys[J]. Materials Science and Engineering: A, 202, 148-156(1995).

    [84] Shiva S, Palani I A, Mishra S K et al. Investigations on the influence of composition in the development of Ni-Ti shape memory alloy using laser based additive manufacturing[J]. Optics & Laser Technology, 69, 44-51(2015).

    [85] Shiva S, Palani I A, Paul C P et al. Investigations on phase transformation and mechanical characteristics of laser additive manufactured TiNiCu shape memory alloy structures[J]. Journal of Materials Processing Technology, 238, 142-151(2016).

    [86] Wang X B, Yu J Y, Liu J W et al. Effect of process parameters on the phase transformation behavior and tensile properties of NiTi shape memory alloys fabricated by selective laser melting[J]. Additive Manufacturing, 36, 101545(2020).

    [87] Yu T W, Gao Y P, Casalena L et al. H-phase precipitation and its effects on martensitic transformation in NiTi-Hf high-temperature shape memory alloys[J]. Acta Materialia, 208, 116651(2021).

    [88] Saedi S, Turabi A S, Andani M T et al. Texture, aging, and superelasticity of selective laser melting fabricated Ni-rich NiTi alloys[J]. Materials Science and Engineering: A, 686, 1-10(2017).

    [89] Adnyana D N. Effect of grain size on transformation temperatures in a grain-refined, copper-based, shape-memory alloy[J]. Metallography, 19, 187-196(1986).

    [90] Gustmann T, Schwab H, Kühn U et al. Selective laser remelting of an additively manufactured Cu-Al-Ni-Mn shape-memory alloy[J]. Materials & Design, 153, 129-138(2018).

    [91] Gao S M, Bodunde O P, Qin M et al. Microstructure and phase transformation of nickel-titanium shape memory alloy fabricated by directed energy deposition with in situ heat treatment[J]. Journal of Alloys and Compounds, 898, 162896(2022).

    [92] Ma J, Karaman I, Noebe R D. High temperature shape memory alloys[J]. International Materials Reviews, 55, 257-315(2010).

    [93] Elahinia M, Moghaddam N S, Amerinatanzi A et al. Additive manufacturing of NiTiHf high temperature shape memory alloy[J]. Scripta Materialia, 145, 90-94(2018).

    [94] Sarkar S, Ren X B, Otsuka K. Evidence for strain glass in the ferroelastic-martensitic system Ti50-xNi50+x[J]. Physical Review Letters, 95, 205702(2005).

    [95] Wang Y, Ren X B, Otsuka K. Shape memory effect and superelasticity in a strain glass alloy[J]. Physical Review Letters, 97, 225703(2006).

    [96] Wang D, Ji Y C, Ren X B et al. Strain glass state, strain glass transition, and controlled strain release[J]. Annual Review of Materials Research, 52, 159-187(2022).

    [97] Ren X B. Strain glass and ferroic glass-unusual properties from glassy nano-domains[J]. Physica Status Solidi (b), 251, 1982-1992(2014).

    [98] Wang Y, Gao J H, Wu H J et al. Strain glass transition in a multifunctional β-type Ti alloy[J]. Scientific Reports, 4, 3995(2014).

    [99] Xue L, Atli K C, Picak S et al. Controlling martensitic transformation characteristics in defect-free NiTi shape memory alloys fabricated using laser powder bed fusion and a process optimization framework[J]. Acta Materialia, 215, 117017(2021).

    [100] King W E, Barth H D, Castillo V M et al. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing[J]. Journal of Materials Processing Technology, 214, 2915-2925(2014).

    [101] Ion J C, Shercliff H R, Ashby M F. Diagrams for laser materials processing[J]. Acta Metallurgica et Materialia, 40, 1539-1551(1992).

    [102] Haberland C, Elahinia M, Walker J M et al. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing[J]. Smart Material Structures, 23, 104002(2014).

    [103] Zhang C, Xue L, Pestka S A et al. Processing parameters and martensitic phase transformation relationships in near defect-free additively manufactured NiTiHf high temperature shape memory alloys[J]. Materials & Design, 222, 110988(2022).

    [104] Ma T Y, Zhang C S, Qi R L et al. Magnetostriction of a (110) oriented Tb0.3Dy0.7Fe1.95 polycrystals annealed under a noncoaxial magnetic field[J]. Journal of Materials Research, 26, 31-35(2011).

    [105] Sehitoglu H, Karaman I, Anderson R et al. Compressive response of NiTi single crystals[J]. Acta Materialia, 48, 3311-3326(2000).

    [106] Moghaddam N S, Saedi S, Amerinatanzi A et al. Achieving superelasticity in additively manufactured NiTi in compression without post-process heat treatment[J]. Scientific Reports, 9, 41(2019).

    [107] Peng Y H, Miao K S, Sun W et al. Recent progress of synchrotron X-ray imaging and diffraction on the solidification and deformation behavior of metallic materials[J]. Acta Metallurgica Sinica (English Letters), 35, 3-24(2022).

    [108] Schmeiser F, Krohmer E, Schell N et al. Experimental observation of stress formation during selective laser melting using in situ X-ray diffraction[J]. Additive Manufacturing, 32, 101028(2020).

    [109] Oh S A, Lim R E, Aroh J W et al. Microscale observation via high-speed X-ray diffraction of alloy 718 during in situ laser melting[J]. JOM, 73, 212-222(2021).

    [110] Uhlmann E, Krohmer E, Schmeiser F et al. A laser powder bed fusion system for in situ X-ray diffraction with high-energy synchrotron radiation[J]. The Review of Scientific Instruments, 91, 075104(2020).

    [111] Hocine S, van Petegem S, Frommherz U et al. A miniaturized selective laser melting device for operando X-ray diffraction studies[J]. Additive Manufacturing, 34, 101194(2020).

    [112] Zhang D S, Liu W, Li Y X et al. In situ observation of crystal rotation in Ni-based superalloy during additive manufacturing process[J]. Nature Communications, 14, 2961(2023).

    [113] Wenk H R, Grigull S. Synchrotron texture analysis with area detectors[J]. Journal of Applied Crystallography, 36, 1040-1049(2003).

    [114] Versnyder F I, Shank M E. The development of columnar grain and single crystal high temperature materials through directional solidification[J]. Materials Science and Engineering, 6, 213-247(1970).

    [115] Gall K, Sehitoglu H, Anderson R et al. On the mechanical behavior of single crystal NiTi shape memory alloys and related polycrystalline phenomenon[J]. Materials Science and Engineering: A, 317, 85-92(2001).

    [116] Patriarca L, Sehitoglu H, Panchenko E Y et al. High-temperature functional behavior of single crystal Ni51.2Ti23.4Hf25.4 shape memory alloy[J]. Acta Materialia, 106, 333-343(2016).

    [117] Chauvet E, Tassin C, Blandin J J et al. Producing Ni-base superalloys single crystal by selective electron beam melting[J]. Scripta Materialia, 152, 15-19(2018).

    [118] Li Y, Yu Y F, Wang Z B et al. Additive manufacturing of nickel-based superalloy single crystals with IN-738 alloy[J]. Acta Metallurgica Sinica (English Letters), 35, 369-374(2022).

    [119] Jodi D E, Kitashima T, Koizumi Y et al. Manufacturing single crystals of pure nickel via selective laser melting with a flat-top laser beam[J]. Additive Manufacturing Letters, 3, 100066(2022).

    [120] Liu Z Y, Qi H. Effects of processing parameters on crystal growth and microstructure formation in laser powder deposition of single-crystal superalloy[J]. Journal of Materials Processing Technology, 216, 19-27(2015).

    Guanqi Li, Dongsheng Zhang, Jiaxing Zheng, Lü Chao, Wei Liu, Xinqing Zhao, Bingbing Zhang, Huilong Hou. Laser Additive Manufacturing of Metallic Functional Materials and In-Situ Synchrotron Radiation Research (Invited)[J]. Chinese Journal of Lasers, 2024, 51(10): 1002305
    Download Citation